R/calcSeCox.R

Defines functions selectJump calcSeCox

Documented in calcSeCox selectJump

### calcSeCox.R --- 
#----------------------------------------------------------------------
## author: Brice Ozenne
## created: maj 27 2017 (11:46) 
## Version: 
## last-updated: nov 26 2020 (19:26) 
##           By: Brice Ozenne
##     Update #: 848
#----------------------------------------------------------------------
## 
### Commentary: 
## 
### Change Log:
#----------------------------------------------------------------------
## 
### Code:


## * calcSeCox (documentation)
#' @title Computation of standard errors for predictions
#' @description Compute the standard error associated to the predictions from Cox regression model
#' using a first order von Mises expansion of the functional (cumulative hazard or survival).
#' @name calcSeCox
#' 
#' @param object The fitted Cox regression model object either
#'     obtained with \code{coxph} (survival package) or \code{cph}
#'     (rms package).
#' @param times Vector of times at which to return the estimated
#'      hazard/survival.
#' @param nTimes the length of the argument \code{times}. 
#' @param type One or several strings that match (either in lower or upper case or mixtures) one
#' or several of the strings \code{"hazard"},\code{"cumhazard"}, \code{"survival"}.
#' @param diag [logical] when \code{FALSE} the hazard/cumlative hazard/survival for all observations at all times is computed,
#' otherwise it is only computed for the i-th observation at the i-th time.
#' @param Lambda0 the baseline hazard estimate returned by \code{BaseHazStrata_cpp}.
#' @param object.n the number of observations in the dataset used to estimate the object. 
#' @param object.time the time to event of the observations used to estimate the object.
#' @param object.eXb the exponential of the linear predictor relative to the observations used to estimate the object. 
#' @param object.strata the strata index of the observations used to estimate the object.
#' @param nStrata the number of strata.
#' @param new.n the number of observations for which the prediction was performed.
#' @param new.eXb the linear predictor evaluated for the new observations.
#' @param new.LPdata the variables involved in the linear predictor for the new observations.
#' @param new.strata the strata indicator for the new observations.
#' @param new.survival the survival evaluated for the new observations.
#' @param nVar the number of variables that form the linear predictor.
#' @param export can be "iid" to return the value of the influence function for each observation.
#'                      "se" to return the standard error for a given timepoint.
#'                      "average.iid" to return the value of the average influence function over the observations for which the prediction was performed.
#'                      
#' @param store.iid Implementation used to estimate the influence function and the standard error.
#' Can be \code{"full"} or \code{"minimal"}. See the details section.
#' 
#' @details \code{store.iid="full"} compute the influence function for each observation at each time in the argument \code{times}
#' before computing the standard error / influence functions.
#' \code{store.iid="minimal"} recompute for each subject specific prediction the influence function for the baseline hazard.
#' This avoid to store all the influence functions but may lead to repeated evaluation of the influence function.
#' This solution is therefore more efficient in memory usage but may not be in terms of computation time.
#' 
# #' @inheritParams  predict.CauseSpecificCox
#' 
#' @author Brice Ozenne broz@@sund.ku.dk, Thomas A. Gerds tag@@biostat.ku.dk
#' 
#' @return A list optionally containing the standard error for the survival, cumulative hazard and hazard.
#'

## * calcSeCox (code)
#' @rdname calcSeCox
calcSeCox <- function(object, times, nTimes, type, diag,
                      Lambda0, object.n, object.time, object.eXb, object.strata, nStrata,
                      new.n, new.eXb, new.LPdata, new.strata, new.survival, 
                      nVar, export, store.iid){

    ## ** Computation of the influence function
    if(is.iidCox(object)){
        store.iid <- object$iid$store.iid
        iid.object <- selectJump(object$iid, times = times, type = type)
    }else{
        iid.object <- iidCox(object, tau.hazard = times, store.iid = store.iid, return.object = FALSE)
    }

    ## ** Prepare arguments
    if(diag){
        nTimes <- 1
    }
    new.strata <- as.numeric(new.strata)
    
    Lambda0$strata <- as.numeric(Lambda0$strata)    
    if("hazard" %in% type){Lambda0$hazard <- lapply(1:nStrata,function(s){Lambda0$hazard[Lambda0$strata==s][Lambda0$oorder.times]})}
    if("cumhazard" %in% type || "survival" %in% type){Lambda0$cumhazard <- lapply(1:nStrata,function(s){Lambda0$cumhazard[Lambda0$strata==s][Lambda0$oorder.times]})}

    if(is.null(attr(export,"factor"))){
        rm.list <- TRUE
        factor <- list(matrix(1, nrow = new.n, ncol = nTimes))
    }else{
        rm.list <- FALSE                
        factor <- attr(export, "factor")
    }
    out <- list()
    if("se" %in% export){
        if("cumhazard" %in% type){out$cumhazard.se <- matrix(NA, nrow = new.n, ncol = nTimes)}
        if("survival" %in% type){out$survival.se <- matrix(NA, nrow = new.n, ncol = nTimes)}
    }
    if("iid" %in% export){
        if("hazard" %in% type){out$hazard.iid <- array(NA, dim = c(object.n, nTimes, new.n))}
        if("cumhazard" %in% type){out$cumhazard.iid <- array(NA, dim = c(object.n, nTimes, new.n))}
        if("survival" %in% type){out$survival.iid <- array(NA, dim = c(object.n, nTimes, new.n))}
    }
    if("average.iid" %in% export){
        if("cumhazard" %in% type){out$cumhazard.average.iid <- matrix(0, nrow = object.n, ncol = nTimes)}
        if("survival" %in% type){out$survival.average.iid <- matrix(0, nrow = object.n, ncol = nTimes)}
    }

    if(store.iid[[1]] == "minimal"){

        ## ** method 1: minimal storage of the influence function
        resCpp <- calcSeMinimalCox_cpp(seqTau = times,
                                       newSurvival = if("survival" %in% type){new.survival}else{new.survival <- matrix(NA)},
                                       hazard0 = if("hazard" %in% type){Lambda0$hazard}else{list(NA)},
                                       cumhazard0 = if("cumhazard" %in% type || "survival" %in% type){Lambda0$cumhazard}else{list(NA)},
                                       newX = new.LPdata,
                                       neweXb = new.eXb,
                                       IFbeta = iid.object$IFbeta,
                                       Ehazard0 = iid.object$calcIFhazard$Elambda0,
                                       cumEhazard0 = iid.object$calcIFhazard$cumElambda0,
                                       hazard_iS0 = iid.object$calcIFhazard$lambda0_iS0,
                                       cumhazard_iS0 = iid.object$calcIFhazard$cumLambda0_iS0,
                                       delta_iS0 = iid.object$calcIFhazard$delta_iS0,
                                       sample_eXb = iid.object$calcIFhazard$eXb,
                                       sample_time = iid.object$obstime,
                                       indexJumpSample_time = lapply(iid.object$calcIFhazard$time1,
                                                                     function(iTime){prodlim::sindex(jump.times = iTime, eval.times = iid.object$obstime)-1}), 
                                       jump_time = iid.object$calcIFhazard$time1, 
                                       indexJumpTau = lapply(iid.object$calcIFhazard$time1,
                                                             function(iTime){prodlim::sindex(jump.times = iTime, eval.times = times)-1}), 
                                       lastSampleTime = iid.object$etime.max,
                                       newdata_index = lapply(1:nStrata,
                                                              function(iS){which(new.strata == iS)-1}),
                                       factor = factor,
                                       nTau = nTimes, nNewObs = new.n, nSample = object.n, nStrata = nStrata, p = nVar,
                                       diag = diag, exportSE = "se" %in% export, exportIF = "iid" %in% export, exportIFmean = "average.iid" %in% export,
                                       exportHazard = "hazard" %in% type, exportCumhazard = "cumhazard" %in% type, exportSurvival = "survival" %in% type,
                                       debug = 0)

        if("iid" %in% export){
            if("hazard" %in% type){out$hazard.iid <-  aperm(resCpp$IF_hazard, perm = c(1,3,2))}
            if("cumhazard" %in% type){out$cumhazard.iid <- aperm(resCpp$IF_cumhazard, perm = c(1,3,2))}
            if("survival" %in% type){out$survival.iid <- aperm(resCpp$IF_survival, perm = c(1,3,2))}
        }
        if("se" %in% export){
            if("cumhazard" %in% type){out$cumhazard.se <- resCpp$SE_cumhazard}
            if("survival" %in% type){out$survival.se <- resCpp$SE_survival}
        }                
        if("average.iid" %in% export){ ## average over strata
            if(rm.list){
                if("hazard" %in% type){out$hazard.average.iid <- matrix(resCpp$IFmean_hazard[[1]], nrow = object.n, ncol = nTimes)}
                if("cumhazard" %in% type){out$cumhazard.average.iid <- matrix(resCpp$IFmean_cumhazard[[1]], nrow = object.n, ncol = nTimes)}
                if("survival" %in% type){out$survival.average.iid <- matrix(resCpp$IFmean_survival[[1]], nrow = object.n, ncol = nTimes)}
            }else{
                if("hazard" %in% type){out$hazard.average.iid <- lapply(resCpp$IFmean_hazard, function(iVec){matrix(iVec, nrow = object.n, ncol = nTimes)})}
                if("cumhazard" %in% type){out$cumhazard.average.iid <- lapply(resCpp$IFmean_cumhazard, function(iVec){matrix(iVec, nrow = object.n, ncol = nTimes)})}
                if("survival" %in% type){out$survival.average.iid <- lapply(resCpp$IFmean_survival, function(iVec){matrix(iVec, nrow = object.n, ncol = nTimes)})}
            }
        }                

                                        # }}}
    }else if("iid" %in% export || "se" %in% export){
        ## ** method 2: using the influence function of the baseline hazard/baseline cumulative hazard

        if(nVar>0){
            X_IFbeta_mat <- tcrossprod(iid.object$IFbeta, new.LPdata)
        }
        
        if( diag || (nVar==0) ){

            for(iStrata in 1:nStrata){ ## iStrata <- 1
                indexStrata <- which(new.strata==iStrata)
                if(length(indexStrata)==0){next}
                iPrevalence <- length(indexStrata)/new.n

                ## compute iid
                if("hazard" %in% type){
                    if (diag) {
                        if(nVar==0){
                            iIFhazard <- iid.object$IFhazard[[iStrata]][,indexStrata,drop=FALSE]
                        }else{
                            iIFhazard <- rowMultiply_cpp(iid.object$IFhazard[[iStrata]][,indexStrata,drop=FALSE] + rowMultiply_cpp(X_IFbeta_mat[,indexStrata,drop=FALSE],
                                                                                                                                   scale = Lambda0$hazard[[iStrata]][indexStrata]),
                                                         scale = new.eXb[indexStrata])
                        }
                    }else{
                        ## nVar==0
                        iIFhazard <- iid.object$IFhazard[[iStrata]]
                        tiIFhazard <- t(iIFhazard)
                    }
                }
                if("cumhazard" %in% type || "survival" %in% type){
                    if (diag) {
                        if(nVar==0){
                            iIFcumhazard <- iid.object$IFcumhazard[[iStrata]][,indexStrata,drop=FALSE]
                        }else{
                            iIFcumhazard <- rowMultiply_cpp(iid.object$IFcumhazard[[iStrata]][,indexStrata,drop=FALSE] + rowMultiply_cpp(X_IFbeta_mat[,indexStrata,drop=FALSE], scale = Lambda0$cumhazard[[iStrata]][indexStrata]),
                                                            scale = new.eXb[indexStrata])
                        }

                        if("survival" %in% type && ("iid" %in% export || "average.iid" %in% export)){
                            iIFsurvival <- rowMultiply_cpp(-iIFcumhazard, scale = new.survival[indexStrata,])
                        }

                    }else{
                        ## nVar == 0
                        iIFcumhazard <- iid.object$IFcumhazard[[iStrata]]
                        tiIFcumhazard <- t(iIFcumhazard)

                        if("survival" %in% type && ("iid" %in% export || "average.iid" %in% export)){
                            iIFsurvival <- rowMultiply_cpp(-iIFcumhazard, scale = new.survival[indexStrata[1],]) ## everybody has the same survival
                            tiIFsurvival <- t(iIFsurvival)
                        }
                    }
                }
                
                ## export
                if(diag){                    
                    if("iid" %in% export){
                        if("hazard" %in% type){out$hazard.iid[,1,indexStrata] <- iIFhazard}
                        if("cumhazard" %in% type){out$cumhazard.iid[,1,indexStrata] <- iIFcumhazard}
                        if("survival" %in% type){out$survival.iid[,1,indexStrata] <- iIFsurvival}
                    }
                    if("se" %in% export){
                        iSEcumhazard <- sqrt(colSums(iIFcumhazard^2))
                        if("cumhazard" %in% type){out$cumhazard.se[indexStrata,1] <- iSEcumhazard}
                        if("survival" %in% type){out$survival.se[indexStrata,1] <- iSEcumhazard * new.survival[indexStrata,1]}
                    }
                    if("average.iid" %in% export){
                        if("hazard" %in% type){out$hazard.average.iid[,1] <- out$hazard.average.iid[,1] + rowSums(iIFhazard)/new.n}
                        if("cumhazard" %in% type){out$cumhazard.average.iid[,1] <- out$cumhazard.average.iid[,1] + rowSums(iIFcumhazard)/new.n}
                        if("survival" %in% type){out$survival.average.iid[,1] <- out$survival.average.iid[,1] + rowSums(iIFsurvival)/new.n}
                    }
                }else{ ## nVar==0

                    if("se" %in% export){
                        iSEcumhazard <- sqrt(colSums(iIFcumhazard^2))
                        if("survival" %in% type){
                            iSEsurvival <- iSEcumhazard * new.survival[indexStrata[1],] ## everybody has the same survival
                        }
                    }

                    for(iObs in indexStrata){ ## iObs <- 1
                        if("iid" %in% export){
                            if("hazard" %in% type){out$hazard.iid[,,iObs] <- iIFhazard}
                            if("cumhazard" %in% type){out$cumhazard.iid[,,iObs] <- iIFcumhazard}
                            if("survival" %in% type){out$survival.iid[,,iObs] <- iIFsurvival}
                        }
                        if("se" %in% export){
                            if("cumhazard" %in% type){out$cumhazard.se[iObs,] <- iSEcumhazard}
                            if("survival" %in% type){out$survival.se[iObs,] <- iSEsurvival}
                        }                        
                    }
                    if("average.iid" %in% export){
                        if("hazard" %in% type){out$hazard.average.iid <- out$hazard.average.iid + iIFhazard * iPrevalence}
                        if("cumhazard" %in% type){out$cumhazard.average.iid <- out$cumhazard.average.iid + iIFcumhazard * iPrevalence}
                        if("survival" %in% type){out$survival.average.iid <- out$survival.average.iid + iIFsurvival * iPrevalence}
                    }
                    
                }
            }

        }else{ ## nVar > 0
            for(iObs in 1:new.n){ ## iObs <- 1
                iObs.strata <- new.strata[iObs]

                ## compute iid
                if("hazard" %in% type){
                    iIFhazard <- (new.eXb[iObs] * (iid.object$IFhazard[[iObs.strata]] + crossprod(t(X_IFbeta_mat[,iObs,drop=FALSE]),Lambda0$hazard[[iObs.strata]])))
                }             
                if("cumhazard" %in% type || "survival" %in% type){
                    iIFcumhazard <- new.eXb[iObs] * (iid.object$IFcumhazard[[iObs.strata]] + crossprod(t(X_IFbeta_mat[,iObs,drop=FALSE]), Lambda0$cumhazard[[iObs.strata]]))
                }
                if("survival" %in% type && ("iid" %in% export || "average.iid" %in% export)){
                    iIFsurvival <- rowMultiply_cpp(-iIFcumhazard, scale = new.survival[iObs,])
                }
                
                ## export                    
                if("iid" %in% export){
                    if("hazard" %in% type){out$hazard.iid[,,iObs] <- iIFhazard}
                    if("cumhazard" %in% type){out$cumhazard.iid[,,iObs] <- iIFcumhazard}
                    if("survival" %in% type){out$survival.iid[,,iObs] <- iIFsurvival}
                }
                if("se" %in% export){
                    iSEcumhazard <- sqrt(colSums(iIFcumhazard^2))
                    if("cumhazard" %in% type){out$cumhazard.se[iObs,] <- iSEcumhazard}
                    if("survival" %in% type){out$survival.se[iObs,] <- iSEcumhazard * new.survival[iObs,,drop=FALSE]}
                }
                if("average.iid" %in% export){  ## average over observations
                    if("hazard" %in% type){out$hazard.average.iid <- out$hazard.average.iid + iIFhazard/new.n}
                    if("cumhazard" %in% type){out$cumhazard.average.iid <- out$cumhazard.average.iid + iIFcumhazard/new.n}
                    if("survival" %in% type){out$survival.average.iid <- out$survival.average.iid + iIFsurvival/new.n}
                }
            }
        }
    

    }else if("average.iid" %in% export){ ## fast average over observations
        ## ** method 3: computation of the average influence function

        ## prepare strata 
        new.Ustrata <- sort(unique(new.strata))
        new.nStrata <- length(new.Ustrata)
            
        new.indexStrata <- lapply(new.Ustrata, function(iStrata){
            which(new.strata==iStrata) - 1
        })
        new.prevStrata <- sapply(new.indexStrata, length)/new.n           

        ## normalize arguments for C++
        attr(new.LPdata,"levels") <- NULL
        if(is.null(new.survival)){
            new.survival <- matrix()
        }

        ## C++
        if("hazard" %in% type){
            outRcpp.hazard <- calcAIFsurv_cpp(ls_IFcumhazard = iid.object$IFhazard[new.Ustrata], 
                                              IFbeta = iid.object$IFbeta,
                                              cumhazard0 = Lambda0$hazard[new.Ustrata],
                                              survival = matrix(0),
                                              eXb = new.eXb,
                                              X = new.LPdata,
                                              prevStrata = new.prevStrata,
                                              ls_indexStrata = new.indexStrata,
                                              factor = factor,
                                              nTimes = nTimes,
                                              nObs = object.n,
                                              nStrata = new.nStrata,
                                              nVar = nVar,
                                              diag = diag,
                                              exportCumHazard = TRUE,
                                              exportSurvival = FALSE)
        }
        if(("cumhazard" %in% type) || ("survival" %in% type)){
            outRcpp.cumhazard <- calcAIFsurv_cpp(ls_IFcumhazard = iid.object$IFcumhazard[new.Ustrata], 
                                                 IFbeta = iid.object$IFbeta,
                                                 cumhazard0 = Lambda0$cumhazard[new.Ustrata],
                                                 survival = new.survival,
                                                 eXb = new.eXb,
                                                 X = new.LPdata,
                                                 prevStrata = new.prevStrata,
                                                 ls_indexStrata = new.indexStrata,
                                                 factor = factor,
                                                 nTimes = nTimes,
                                                 nObs = object.n,
                                                 nStrata = new.nStrata,
                                                 nVar = nVar,
                                                 diag = diag,
                                                 exportCumHazard = ("cumhazard" %in% type),
                                                 exportSurvival = ("survival" %in% type))
        }
        
        ## reshape
        if("hazard" %in% type){
            if(rm.list){
                out$hazard.average.iid <- matrix(outRcpp.hazard[[1]][[1]], nrow = object.n, ncol = nTimes)
            }else{
                out$hazard.average.iid <- lapply(outRcpp.hazard[[1]], function(iMat){matrix(iMat, nrow = object.n, ncol = nTimes)})
            }
        }
        if("cumhazard" %in% type){
            if(rm.list){
                out$cumhazard.average.iid <- matrix(outRcpp.cumhazard[[1]][[1]], nrow = object.n, ncol = nTimes)
            }else{
                out$cumhazard.average.iid <- lapply(outRcpp.cumhazard[[1]], function(iMat){matrix(iMat, nrow = object.n, ncol = nTimes)})
            }
        }
        if("survival" %in% type){
            if(rm.list){
                out$survival.average.iid <- matrix(outRcpp.cumhazard[[2]][[1]], nrow = object.n, ncol = nTimes)
            }else{
                out$survival.average.iid <- lapply(outRcpp.cumhazard[[2]], function(iMat){matrix(iMat, nrow = object.n, ncol = nTimes)})
            }
        }
            
            }

    ## export
    return(out)
    
}

## * selectJump
#' @title Evaluate the influence function at selected times
#'
#' @description Evaluate the influence function at selected times
#' @param IF influence function returned by iidCox
#' @param times the times at which the influence function should be assessed
#' @param type can be \code{"hazard"} or/and \code{"cumhazard"}.
#' 
#' @author Brice Ozenne broz@@sund.ku.dk
#' 
#' @return An object with the same dimensions as IF
#' 
selectJump <- function(IF, times, type){

    if(any(times<0)){warning("selectJump may not handle correctly negative times")}
        
  nStrata <- length(IF$time)
  for(iStrata in 1:nStrata){
      
      if(IF$store.iid == "minimal"){
          isJump <- times %in% IF$time[[iStrata]]
          indexJump <- prodlim::sindex(jump.times = c(0,IF$time[[iStrata]]), eval.times = times)
          if(NROW(IF$calcIFhazard$Elambda0[[iStrata]])>0){
              IF$calcIFhazard$Elambda0[[iStrata]] <- rowMultiply_cpp(cbind(0,IF$calcIFhazard$Elambda0[[iStrata]])[,indexJump,drop=FALSE], scale = isJump)
          }else{
              IF$calcIFhazard$Elambda0[[iStrata]] <- matrix(NA, nrow = 0, ncol = length(isJump))
          }
          if(NROW(IF$calcIFhazard$cumElambda0[[iStrata]])>0){
              IF$calcIFhazard$cumElambda0[[iStrata]] <- cbind(0,IF$calcIFhazard$cumElambda0[[iStrata]])[,indexJump,drop=FALSE]
          }else{
              IF$calcIFhazard$cumElambda0[[iStrata]] <- matrix(NA, nrow = 0, ncol = length(isJump))
          }
          IF$calcIFhazard$lambda0_iS0[[iStrata]] <- IF$calcIFhazard$lambda0_iS0[[iStrata]] * (IF$calcIFhazard$time1[[iStrata]] <= max(times))
          IF$calcIFhazard$cumLambda0_iS0[[iStrata]] <- IF$calcIFhazard$cumLambda0_iS0[[iStrata]] * (IF$calcIFhazard$time1[[iStrata]] <= max(times))
      }else{
          if("hazard" %in% type){
              match.times <- match(times, table = IF$time[[iStrata]])
              match.times[is.na(match.times)] <- 0
              if(any(times > IF$etime.max[[iStrata]])){
                  match.times[times > IF$etime.max[[iStrata]]] <- NA
              }
              IF$IFhazard[[iStrata]] <- subsetIndex(IF$IFhazard[[iStrata]], index = match.times, default = 0, col = TRUE)
          }
          if("cumhazard" %in% type || "survival" %in% type){
              indexJump <- prodlim::sindex(jump.times = IF$time[[iStrata]], eval.times = times)
              if(any(times > IF$etime.max[[iStrata]])){
                  indexJump[times > IF$etime.max[[iStrata]]] <- NA
              }
              IF$IFcumhazard[[iStrata]] <- subsetIndex(IF$IFcumhazard[[iStrata]], index = indexJump, default = 0, col = TRUE)
          }    
      }
      IF$time[[iStrata]] <- times
  }
  
  return(IF)
  
}

#----------------------------------------------------------------------
### calcSeCox.R ends here

Try the riskRegression package in your browser

Any scripts or data that you put into this service are public.

riskRegression documentation built on Jan. 13, 2021, 11:12 a.m.