tests/testthat/test_merge.R

library(rnndescent)
context("Merging")

set.seed(1337)
ui10rnn1 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
ui10rnn2 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
ui10rnn3 <- random_knn(ui10, k = 4, order_by_distance = FALSE)

# serial
output <- capture_everything({
  ui10mnn <- merge_knn(list(ui10rnn1, ui10rnn2), verbose = TRUE)
})
expect_match(output, "Merging")
expect_true(sum(ui10mnn$dist) < sum(ui10rnn1$dist))
expect_true(sum(ui10mnn$dist) < sum(ui10rnn2$dist))
check_nbrs(ui10mnn, ui10_eucd, tol = 1e-6)

# different k
ui10rnnk5 <- random_knn(ui10, k = 5, order_by_distance = FALSE)
ui10mnnk45 <- merge_knn(list(ui10rnn1, ui10rnnk5))
expect_equal(ncol(ui10mnnk45$idx), 4)
check_nbrs(ui10mnnk45, ui10_eucd, tol = 1e-6)


# query
set.seed(1337)
qnbrs1 <- random_knn_query(reference = ui6, query = ui4, k = 4)
qnbrs2 <- random_knn_query(reference = ui6, query = ui4, k = 4)
qnbrs3 <- random_knn_query(reference = ui6, query = ui4, k = 4)
qnbrsm <- merge_knn(list(qnbrs1, qnbrs2), is_query = TRUE)
check_query_nbrs(nn = qnbrsm, query = ui4, ref_range = 1:6, query_range = 7:10, k = 4, expected_dist = ui10_eucd, tol = 1e-6)

# parallel
ui10mnnt <- merge_knn(list(ui10rnn1, ui10rnn2), n_threads = 1)
expect_true(sum(ui10mnnt$dist) < sum(ui10rnn1$dist))
expect_true(sum(ui10mnnt$dist) < sum(ui10rnn2$dist))
check_nbrs(ui10mnnt, ui10_eucd, tol = 1e-6)

qnbrsmt <- merge_knn(list(qnbrs1, qnbrs2), is_query = TRUE, n_threads = 1)
check_query_nbrs(nn = qnbrsmt, query = ui4, ref_range = 1:6, query_range = 7:10, k = 4, expected_dist = ui10_eucd, tol = 1e-6)


# merge list
# an empty list returns an empty list
expect_equal(list(), merge_knn(list()))

# one list returns the original list (apart from some casting of distances)
ui10rnno <- random_knn(ui10, k = 4, order_by_distance = TRUE)
ui10mnnl1 <- merge_knn(list(ui10rnno))
expect_equal(ui10mnnl1$idx, ui10rnno$idx)
expect_equal(ui10mnnl1$dist, ui10rnno$dist, tol = 1e-7)

# serial
# for two matrices merge_knn and merge_knn give the same results
ui10mnnl <- merge_knn(list(ui10rnn1, ui10rnn2))
expect_equal(ui10mnnl$idx, ui10mnn$idx)
expect_equal(ui10mnnl$dist, ui10mnn$dist)

# all 3 matrices are processed
ui10mnnl3 <- merge_knn(list(ui10rnn1, ui10rnn2, ui10rnn3))
expect_true(sum(ui10mnnl3$dist) <= sum(ui10mnn$dist))
check_nbrs(ui10mnnl3, ui10_eucd, tol = 1e-6)

# queries

# all 3 matrices are processed
qnbrsml3 <- merge_knn(list(qnbrs1, qnbrs2, qnbrs3), is_query = TRUE)
expect_true(sum(qnbrsml3$dist) <= sum(qnbrsm$dist))
check_query_nbrs(nn = qnbrsml3, query = ui4, ref_range = 1:6, query_range = 7:10, k = 4, expected_dist = ui10_eucd, tol = 1e-6)

# parallel

# all 3 matrices are processed
ui10mnnl3t <- merge_knn(list(ui10rnn1, ui10rnn2, ui10rnn3), n_threads = 1)
expect_true(sum(ui10mnnl3t$dist) <= sum(ui10mnnt$dist))
check_nbrs(ui10mnnl3t, ui10_eucd, tol = 1e-6)

# queries

# all 3 matrices are processed
qnbrsml3t <- merge_knn(list(qnbrs1, qnbrs2, qnbrs3), is_query = TRUE, n_threads = 1)
expect_true(sum(qnbrsml3t$dist) <= sum(qnbrsmt$dist))
check_query_nbrs(nn = qnbrsml3, query = ui4, ref_range = 1:6, query_range = 7:10, k = 4, expected_dist = ui10_eucd, tol = 1e-6)

# missing indices
ui10rnn2$idx[1, 2] <- 0
ui10rnn2$dist[1, 2] <- NA
ui10mergemissing <- merge_knn(list(ui10rnn1, ui10rnn2))
expect_equal(range(ui10mergemissing$idx), c(1, 10))

ui10mergemissingl <- merge_knn(list(ui10rnn1, ui10rnn2, ui10rnn3))
expect_equal(range(ui10mergemissingl$idx), c(1, 10))

# Ensure that repeated merging doesn't change old result
r1 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r2 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
m12 <- merge_knn(list(r1, r2))
m12_idx_copy <- matrix(m12$idx, nrow = nrow(m12$idx))
m12_dist_copy <- matrix(m12$dist, nrow = nrow(m12$dist))
r3 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r3_idx_copy <- matrix(r3$idx, nrow = nrow(r3$idx))
r3_dist_copy <- matrix(r3$dist, nrow = nrow(r3$dist))
m123 <- merge_knn(list(m12, r3))
expect_equal(m12$idx, m12_idx_copy)
expect_equal(m12$dist, m12_dist_copy)
expect_equal(r3$idx, r3_idx_copy)
expect_equal(r3$dist, r3_dist_copy)

# reverse order of arguments
r1 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r2 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
m12 <- merge_knn(list(r1, r2))
m12_idx_copy <- matrix(m12$idx, nrow = nrow(m12$idx))
m12_dist_copy <- matrix(m12$dist, nrow = nrow(m12$dist))
r3 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r3_idx_copy <- matrix(r3$idx, nrow = nrow(r3$idx))
r3_dist_copy <- matrix(r3$dist, nrow = nrow(r3$dist))
m123 <- merge_knn(list(r3, m12))
expect_equal(m12$idx, m12_idx_copy)
expect_equal(m12$dist, m12_dist_copy)
expect_equal(r3$idx, r3_idx_copy)
expect_equal(r3$dist, r3_dist_copy)


# check list merge
r1 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r2 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
m12 <- merge_knn(list(r1, r2))
m12_idx_copy <- matrix(m12$idx, nrow = nrow(m12$idx))
m12_dist_copy <- matrix(m12$dist, nrow = nrow(m12$dist))
r3 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r3_idx_copy <- matrix(r3$idx, nrow = nrow(r3$idx))
r3_dist_copy <- matrix(r3$dist, nrow = nrow(r3$dist))
m123 <- merge_knn(list(m12, r3))
expect_equal(m12$idx, m12_idx_copy)
expect_equal(m12$dist, m12_dist_copy)
expect_equal(r3$idx, r3_idx_copy)
expect_equal(r3$dist, r3_dist_copy)


r1 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r2 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
m12 <- merge_knn(list(r1, r2))
m12_idx_copy <- matrix(m12$idx, nrow = nrow(m12$idx))
m12_dist_copy <- matrix(m12$dist, nrow = nrow(m12$dist))
r3 <- random_knn(ui10, k = 4, order_by_distance = FALSE)
r3_idx_copy <- matrix(r3$idx, nrow = nrow(r3$idx))
r3_dist_copy <- matrix(r3$dist, nrow = nrow(r3$dist))
m123 <- merge_knn(list(r3, m12))
expect_equal(m12$idx, m12_idx_copy)
expect_equal(m12$dist, m12_dist_copy)
expect_equal(r3$idx, r3_idx_copy)
expect_equal(r3$dist, r3_dist_copy)



# Errors ------------------------------------------------------------------

expect_error(
  validate_nn_graph(list(
    idx = matrix(nrow = 10, ncol = 2),
    dist = matrix(nrow = 11, ncol = 2)
  )),
  "nn matrix has 11 rows"
)
expect_error(
  validate_nn_graph(list(
    idx = matrix(nrow = 10, ncol = 2),
    dist = matrix(nrow = 10, ncol = 3)
  )),
  "nn matrix has 3 cols"
)
expect_error(
  validate_are_mergeable(
    list(idx = matrix(nrow = 10, ncol = 2), dist = matrix(nrow = 10, ncol = 2)),
    list(idx = matrix(nrow = 11, ncol = 5), dist = matrix(nrow = 11, ncol = 5))
  ),
  "must have same number of rows"
)

expect_error(
  validate_are_mergeablel(list(list(
    idx = matrix(nrow = 10, ncol = 2),
    dist = matrix(nrow = 11, ncol = 2)
  ))),
  "nn matrix has 11 rows"
)
expect_error(
  validate_are_mergeablel(list(list(
    idx = matrix(nrow = 10, ncol = 2),
    dist = matrix(nrow = 10, ncol = 3)
  ))),
  "nn matrix has 3 cols"
)
expect_error(
  validate_are_mergeablel(list(
    list(idx = matrix(nrow = 10, ncol = 2), dist = matrix(nrow = 10, ncol = 2)),
    list(idx = matrix(nrow = 11, ncol = 5), dist = matrix(nrow = 11, ncol = 5))
  )),
  "must have same number of rows"
)
expect_error(
  validate_are_mergeablel(list(
    list(idx = matrix(nrow = 10, ncol = 2), dist = matrix(nrow = 10, ncol = 2)),
    list(badidx = matrix(nrow = 10, ncol = 5), dist = matrix(nrow = 10, ncol = 5))
  )),
  "must contain 'idx'"
)
expect_error(
  validate_are_mergeablel(list(
    list(idx = matrix(nrow = 10, ncol = 2), dist = matrix(nrow = 10, ncol = 2)),
    list(idx = matrix(nrow = 10, ncol = 5), baddist = matrix(nrow = 10, ncol = 5))
  )),
  "must contain 'dist'"
)

Try the rnndescent package in your browser

Any scripts or data that you put into this service are public.

rnndescent documentation built on May 29, 2024, 8:38 a.m.