robCompositions-package | R Documentation |

The package contains methods for imputation of compositional data including robust methods, (robust) outlier detection for compositional data, (robust) principal component analysis for compositional data, (robust) factor analysis for compositional data, (robust) discriminant analysis (Fisher rule) and (robust) Anderson-Darling normality tests for compositional data as well as popular log-ratio transformations (alr, clr, ilr, and their inverse transformations).

Matthias Templ, Peter Filzmoser, Karel Hron,

Maintainer: Matthias Templ <templ@tuwien.ac.at>

Aitchison, J. (1986) *The Statistical Analysis of
Compositional Data* Monographs on Statistics and Applied Probability.
Chapman and Hall Ltd., London (UK). 416p.

Filzmoser, P., and Hron, K. (2008) Outlier detection for compositional data
using robust methods. *Math. Geosciences*, **40** 233-248.

Filzmoser, P., Hron, K., Reimann, C. (2009) Principal Component Analysis for
Compositional Data with Outliers. *Environmetrics*, **20** (6),
621–632.

P. Filzmoser, K. Hron, C. Reimann, R. Garrett (2009): Robust Factor Analysis
for Compositional Data. *Computers and Geosciences*, **35** (9),
1854–1861.

Hron, K. and Templ, M. and Filzmoser, P. (2010) Imputation of missing values
for compositional data using classical and robust methods
*Computational Statistics and Data Analysis*, **54** (12),
3095–3107.

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter (2008): Statistical
Data Analysis Explained. *Applied Environmental Statistics with R*.
John Wiley and Sons, Chichester, 2008.

```
## k nearest neighbor imputation
data(expenditures)
expenditures[1,3]
expenditures[1,3] <- NA
impKNNa(expenditures)$xImp[1,3]
## iterative model based imputation
data(expenditures)
x <- expenditures
x[1,3]
x[1,3] <- NA
xi <- impCoda(x)$xImp
xi[1,3]
s1 <- sum(x[1,-3])
impS <- sum(xi[1,-3])
xi[,3] * s1/impS
xi <- impKNNa(expenditures)
xi
summary(xi)
## Not run: plot(xi, which=1)
plot(xi, which=2)
plot(xi, which=3)
## pca
data(expenditures)
p1 <- pcaCoDa(expenditures)
p1
plot(p1)
## outlier detection
data(expenditures)
oD <- outCoDa(expenditures)
oD
plot(oD)
## transformations
data(arcticLake)
x <- arcticLake
x.alr <- addLR(x, 2)
y <- addLRinv(x.alr)
addLRinv(addLR(x, 3))
data(expenditures)
x <- expenditures
y <- addLRinv(addLR(x, 5))
head(x)
head(y)
addLRinv(x.alr, ivar=2, useClassInfo=FALSE)
data(expenditures)
eclr <- cenLR(expenditures)
inveclr <- cenLRinv(eclr)
head(expenditures)
head(inveclr)
head(cenLRinv(eclr$x.clr))
require(MASS)
Sigma <- matrix(c(5.05,4.95,4.95,5.05), ncol=2, byrow=TRUE)
z <- pivotCoordInv(mvrnorm(100, mu=c(0,2), Sigma=Sigma))
```

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.