Nothing
# These are just space savers
#' Cleaner conversion functions
#'
#' @param x Value to be converted
#' @param ... other args for as. conversion
#'
#' @author Steven Nydick, \email{steven.nydick@@kornferry.com}
#' @author Ben Wiseman, \email{benjamin.wiseman@@kornferry.com}
#'
#'
#' @note
#' These are shorthand aliases for common conversions There is nothing magical
#' here, but it can make your code more readable
#'
#' @examples
#' chr(42) # "42" = as.character
#' int(42.1) # 42L = as.integer
#' dbl("42L") # 42.0 = as.double
#' num("42") # 42 = as.numeric
#' bool(42) # TRUE = as.logical
#'
#' @author Ben Wiseman, \email{benjamin.wiseman@@kornferry.com}
#' @export
#' @rdname cleaner_conversions
chr <- function(x, ...) as.character(x, ...)
#' @export
#' @rdname cleaner_conversions
int <- function(x, ...) as.integer(x, ...)
#' @export
#' @rdname cleaner_conversions
dbl <- function(x, ...) as.double(x, ...)
#' @export
#' @rdname cleaner_conversions
num <- function(x, ...) as.numeric(x, ...)
#' @export
#' @rdname cleaner_conversions
bool <- function(x, ...) as.logical(x, ...)
#### Conversion shorthands
#' convert x to arbitrary class
#' @param x object to be converted
#' @param class chatracter name of the class to convert x to
#' @examples
#'
#' foo <- 255
#' as.class(foo, "roman")
#' # [1] CCLV
#' @rdname cleaner_conversions
#' @author Ben Wiseman, \email{benjamin.wiseman@@kornferry.com}
#' @export
as.class <- function(x, class){
eval(parse(text = paste0("as.", class, "('", as.character(x), "')")))
}
#' Convert factor with numeric labels into numeric vector
#' @param x a factor with numeric labels
#' @author Ulrike Grömping, \email{groemping@@beuth-hochschule.de}
#'
#' @examples
#'
#' x <- factor(c(11, 22, 33, 99))
#' as.numeric(x)
#' # 1 2 3 4 # NOT typically the desired.expected output
#'
#' f.as.numeric(x)
#' # 11 22 33 99 # Typically desired output
#'
#' # Or...
#' as.numeric(as.character(x)) # A tad unsightly
#'
#' @author Ben Wiseman, \email{benjamin.wiseman@@kornferry.com}
#' @export
#' @rdname factor_conversion
f.as.numeric <- function(x){
as.numeric(levels(x))[as.numeric(x)]
#as.numeric(as.character(x)) # for factors
}
#### Time Savers
#' Little functions to replace common minor functions. useful in apply sttements
#' @param x an R object, usually a character vector
#' @param type 'v' (default) for vector `x[1]`; 'l' for list `x[[1]]`
#'
#' @examples
#' # listr of car names
#' car_names <- strsplit(row.names(mtcars)[1:5], " ")
#'
#' sapply(car_names, get_1st)
#' # [1] "Mazda" "Mazda" "Datsun" "Hornet" "Hornet"
#'
#' sapply(car_names, get_nth, 2)
#' # [1] "RX4" "RX4" "710" "4" "Sportabout"
#'
#' # OR if you just want to pull a simple string apart (e.g. someone's full name):
#'
#' get_1st_word(rownames(mtcars)[1:5])
#' #[1] "Mazda" "Mazda" "Datsun" "Hornet" "Hornet"
#'
#' get_last_word(rownames(mtcars)[1:5])
#' #[1] "RX4" "Wag" "710" "Drive" "Sportabout"
#'
#' get_nth_word(rownames(mtcars)[1:5], 2)
#' #[1] "RX4" "RX4" "710" "4" "Sportabout"
#'
#'
#' @author Ben Wiseman, \email{benjamin.wiseman@@kornferry.com}
#' @export
#' @rdname time_savers
get_1st <- function(x, type = 'v') {
if(type %in% c('l', "list")) x[[1]]
else x[1]
}
#' @export
#' @param n integer, the nth element to select
#' @rdname time_savers
get_last <- function(x, type = 'v') {
if(type %in% c('l', "list")) x[[length(x)]]
else x[length(x)]
}
#' @export
#' @param n integer, the nth element to select
#' @rdname time_savers
get_nth <- function(x, n = 1, type = 'v') {
if(type %in% c('l', "list")) x[[n]]
else x[n]
}
#' @export
#' @param split character that separated words. Default = ' '
#' @rdname time_savers
get_1st_word <- function(x, type = 'v', split = ' ') {
unlist(lapply(strsplit(x, split), get_1st, type))
}
#' @export
#' @param split character that separated words. Default = ' '
#' @rdname time_savers
get_last_word <- function(x, type = 'v', split = ' ') {
unlist(lapply(strsplit(x, split), get_last, type))
}
#' @export
#' @param n integer, the nth word to select
#' @param split character that separated words. Default = ' '
#' @rdname time_savers
get_nth_word <- function(x, n = 1, type = 'v', split = ' ') {
unlist(lapply(strsplit(x, split), get_nth, n=n, type=type))
}
#' Get most common thing(s)
#' @param x a vector of things
#' @param collapse OPTIONAL character - paste output into single string with collapse
#' @return a vector of most common element(s). Will be character unless x is numeric and you don't tell it to collapse into a single string!
#' @examples
#' my_stuff <- c(1:10, 10, 5)
#' # These are straight forward
#' get_1st(my_stuff)
#' get_nth(my_stuff, 3)
#' get_last(my_stuff)
# Returns numeric vector of mode(s) if x is numeric
#' get_most_frequent(my_stuff)
# Else it returns a character vector
#' my_chars <- c("a", "b", "b", "a", "g", "o", "l", "d")
#' get_most_frequent(my_chars)
# can collapse into a single string (for convienience)
#' get_most_frequent(my_chars, collapse = " & ")
#' @export
#' @rdname time_savers
get_most_frequent <- function(x, collapse = NULL){
x_class <- class(x)
x_summary <- sort(summary(as.factor(as.character(x))), decreasing = TRUE)
out <- names(x_summary[x_summary==max(x_summary, na.rm = TRUE)])
#out <- as.class(out, x_class) weird with factors
# if collapsing
if(!is.null(collapse)) out <- paste(unique(out), collapse = collapse)
if(is.null(collapse) && is.numeric(x)) out <- as.numeric(out)
return(out )
}
#' @param x a string
#' @param ignore.punct logical - ignore punctuation marks
#' @param ignore.case logical - ignore case (if true, will return in lower)
#' @param split character that separated words. Default = ' '
#' @param collapse OPTIONAL character - paste output into single string with collapse
#' @param punct.regex character - regex used to remove punctuation (by default `[[:punct:]]`)
#' @param punct.replace character - what to replace punctuation with (default is "")
#' @return a vector of most common element(s). Will be character unless x is numeric and you don't tell it to collapse into a single string!
#' @examples
#' generic_string <- "Who's A good boy? Winston's a good boy!"
#'
#'get_1st_word(generic_string)
#'get_nth_word(generic_string, 3)
#'get_last_word(generic_string)
#'# default ignores case and punctuation
#'get_most_frequent_word(generic_string)
#'# can change like so:
#'get_most_frequent_word(generic_string, ignore.case = FALSE, ignore.punct = FALSE)
#'
#' @export
#' @rdname time_savers
get_most_frequent_word <- function(x,
ignore.punct = TRUE,
ignore.case = TRUE,
split = " ",
collapse = NULL,
punct.regex = "[[:punct:]]",
punct.replace = ""
){
x_class <- class(x)
if(x_class != "character") x <- as.character(x)
if(ignore.case) x <- tolower(x)
if(ignore.punct) x <- gsub(punct.regex, punct.replace, x)
x_words <- unlist(strsplit(x, split))
x_summary <- sort(summary(as.factor(as.character(x_words))), decreasing = TRUE)
out <- names(x_summary[x_summary==max(x_summary, na.rm = TRUE)])
#out <- as.class(out, x_class)
# if collapsing
if(!is.null(collapse)) out <- paste(unique(out), collapse = collapse)
return(out )
}
#' Return number of unique things in x
#' @export
#' @param x vector
#' @param na.rm whether to ignore NAs when determining uniqueness
#' @rdname time_savers
n_unique <- function(x, na.rm = FALSE){
if(isTRUE(na.rm)){
calc_len <- length_cc
} else{
calc_len <- length
}
calc_len(unique(x))
}
#' Return vector of n points evenly spaced around the origin point
#' @return Numeric vector. Will default to 1 if arguments are left blank to conform with default seq() behaviour.
#' @export
#' @param origin number to center sequence around
#' @param n number of points to create
#' @param spacing distance between any two points in the sequence
#' @rdname time_savers
seq_around <- function(origin = 1, n = 1, spacing = 0.25){
if(length(n) != 1 || !is.integer(n)) rop_stop("Must provide a single integer as n argument")
# easy cases
if(n==1) return(origin)
if(n>=2) {
y <- origin + seq(from = -((n-1)/2)*spacing, to = ((n-1)/2)*spacing, length.out = n )
return(y)
}
# clearly n is broken or negative
rop_stop("Could not generate numeric sequence in seq_around() - check arguments.")
}
#' like read.csv, but for tsv and default header = TRUE
#' @param file path of file you want to load
#' @param ... other args used by read.table
#' @rdname read.tsv
#' @export
read.tsv <- function(file, ...){
utils::read.table(file, header = TRUE, sep = '\t', ...)
}
#' like read.csv, but for pipe-delineated and defaults to header = TRUE
#' @param file path of file you want to load
#' @param ... other args used by read.table
#' @rdname read.tsv
#' @export
read.psv <- function(file, ...){
utils::read.table(file, header = TRUE, sep = '|', ...)
}
#' loads package if available, else tries to install it (from CRAN by default)
#' @param pkg name of package to load/install
#' @param ... other args used by install.packages
#' @rdname library.force
#' @export
library.force <- function(pkg, ...){
# Try to load the package
installed <- require(pkg, character.only = TRUE)
# If the package is not installed, install it
if (!installed) {
utils::install.packages(pkg, ...)
# Try to load the package again after installing
library(pkg, character.only = TRUE)
}
}
#' loads package if available, else tries to install it (from CRAN by default)
#' @param pkg name of package to load/install
#' @param ... other args used by install.packages
#' @rdname library.force
#' @export
require.force <- function(pkg, ...) {
library.force(pkg, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.