Description Usage Arguments Value Examples
Performs cross-validation for a sNPLS model
1 2 3 4 5 6 7 8 9 10 11 12  | 
X_npls | 
 A three-way array containing the predictors.  | 
Y_npls | 
 A matrix containing the response.  | 
ncomp | 
 A vector with the different number of components to test  | 
samples | 
 Number of samples for performing random search in continuous thresholding  | 
keepJ | 
 A vector with the different number of selected variables to test for discrete thresholding  | 
keepK | 
 A vector with the different number of selected 'times' to test for discrete thresholding  | 
nfold | 
 Number of folds for the cross-validation  | 
parallel | 
 Should the computations be performed in parallel? Set up strategy first with   | 
method | 
 Select between sNPLS, sNPLS-SR or sNPLS-VIP  | 
... | 
 Further arguments passed to sNPLS  | 
A list with the best parameters for the model and the CV error
1 2 3 4 5 6 7 8 9 10 11  | ## Not run: 
X_npls<-array(rpois(7500, 10), dim=c(50, 50, 3))
Y_npls<-matrix(2+0.4*X_npls[,5,1]+0.7*X_npls[,10,1]-0.9*X_npls[,15,1]+
0.6*X_npls[,20,1]- 0.5*X_npls[,25,1]+rnorm(50), ncol=1)
#Grid search for discrete thresholding
cv1<- cv_snpls(X_npls, Y_npls, ncomp=1:2, keepJ = 1:3, keepK = 1:2, parallel = FALSE)
#Random search for continuous thresholding
cv2<- cv_snpls(X_npls, Y_npls, ncomp=1:2, samples=20, parallel = FALSE)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.