CI.CDF: Pointwise Confidence Intervals for Kernel Smooth CDF

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/sROC.R

Description

Estimate the pointwise confidence intervals for Kernel Smooth CDF.

Usage

1
 CI.CDF(CDF, alpha=0.05)

Arguments

CDF

a “CDF” object generated by kCDF(...).

alpha

the significant level. The default is 0.05 which generates 95% confidence intervals for the CDF.

Details

The pointwise confidence intervals are calculated by the asymptotic distribution of the kernel estimator of CDF.

Value

A list contents

x

the points where the CDF is estimated.

Fhat

the estimated CDF values. These will be numerical numbers between zero and one.

Fhat.upper

the upper boundaries of the CDF.

Fhat.lower

the lower boundaries of the CDF.

alpha

the significant level used.

Author(s)

X.F. Wang wangx6@ccf.org

References

Azzalini, A. (1981). A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika, 68, 326-328.

Wang, X.F., Fan, Z., and Wang, B. (2010). Estimating smooth distribution function in the presence of heteroscedastic measurement errors. Computational Statistics and Data Analysis, 54(1), 25-36.

See Also

kCDF, bw.CDF.pi.

Examples

1
2
3
4
5
6
7
8
set.seed(100)
n <- 200
x <- c(rnorm(n/2, mean=-2, sd=1), rnorm(n/2, mean=3, sd=0.8))
x.CDF <- kCDF(x)
x.CDF
CI.CDF(x.CDF)
plot(x.CDF, alpha=0.05, main="Kernel estimate of distribution function")
curve(pnorm(x, mean=-2, sd=1)/2 + pnorm(x, mean=3, sd=0.8)/2, from =-6, to=6, add=TRUE, lty=2, col="blue")

sROC documentation built on May 1, 2019, 10:24 p.m.

Related to CI.CDF in sROC...