htmt | R Documentation |
This function assesses discriminant validity through the
heterotrait-monotrait ratio (HTMT) of the correlations (Henseler, Ringlet &
Sarstedt, 2015). Specifically, it assesses the arithmetic (Henseler et al.,
) or geometric (Roemer et al., 2021) mean correlation
among indicators across constructs (i.e. heterotrait–heteromethod
correlations) relative to the geometric-mean correlation among indicators
within the same construct (i.e. monotrait–heteromethod correlations).
The resulting HTMT(2) values are interpreted as estimates of inter-construct
correlations. Absolute values of the correlations are recommended to
calculate the HTMT matrix, and are required to calculate HTMT2. Correlations
are estimated using the lavaan::lavCor()
function.
htmt(model, data = NULL, sample.cov = NULL, missing = "listwise",
ordered = NULL, absolute = TRUE, htmt2 = TRUE)
model |
lavaan |
data |
A |
sample.cov |
A covariance or correlation matrix can be used, instead of
|
missing |
If |
ordered |
Character vector. Only used if object is a |
absolute |
|
htmt2 |
|
A matrix showing HTMT(2) values (i.e., discriminant validity) between each pair of factors.
Ylenio Longo (University of Nottingham; yleniolongo@gmail.com)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11747-014-0403-8")}
Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2—An improved criterion for assessing discriminant validity in structural equation modeling. Industrial Management & Data Systems, 121(21), 2637–2650. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1108/IMDS-02-2021-0082")}
Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44(1), 119–134. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11747-015-0455-4")}
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
dat <- HolzingerSwineford1939[, paste0("x", 1:9)]
htmt(HS.model, dat)
## save covariance matrix
HS.cov <- cov(HolzingerSwineford1939[, paste0("x", 1:9)])
## HTMT using arithmetic mean
htmt(HS.model, sample.cov = HS.cov, htmt2 = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.