lavTestWald.mi-deprecated | R Documentation |
Wald test for testing a linear hypothesis about the parameters of lavaan models fitted to multiple imputed data sets. Statistics for constraining one or more free parameters in a model can be calculated from the pooled point estimates and asymptotic covariance matrix of model parameters using Rubin's (1987) rules, or by pooling the Wald test statistics across imputed data sets (Li, Meng, Raghunathan, & Rubin, 1991).
lavTestWald.mi(object, constraints = NULL, test = c("D1","D2"),
asymptotic = FALSE, scale.W = !asymptotic,
omit.imps = c("no.conv","no.se"),
verbose = FALSE, warn = TRUE)
object |
An object of class OLDlavaan.mi. |
constraints |
A |
test |
|
asymptotic |
|
scale.W |
|
omit.imps |
|
verbose |
|
warn |
|
The constraints are specified using the "=="
operator.
Both the left-hand side and the right-hand side of the equality can contain
a linear combination of model parameters, or a constant (like zero).
The model parameters must be specified by their user-specified labels from
the link[lavaan]{model.syntax}
. Names of defined parameters
(using the ":=" operator) can be included too.
A vector containing the Wald test statistic (either an F
or
\chi^2
statistic, depending on the asymptotic
argument),
the degrees of freedom (numerator and denominator, if
asymptotic = FALSE
), and a p value. If
asymptotic = FALSE
, the relative invrease in variance (RIV, or
average for multiparameter tests: ARIV) used to calculate the denominator
df is also returned as a missing-data diagnostic, along with the
fraction missing information (FMI = ARIV / (1 + ARIV)).
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Adapted from lavaan source code, written by Yves Rosseel (Ghent University; Yves.Rosseel@UGent.be)
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from https://www.jstor.org/stable/24303994
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
lavaan::lavTestWald()
semTools-deprecated()
## See the new lavaan.mi package
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.