indProd | R Documentation |
The indProd
function will make products of indicators using no
centering, mean centering, double-mean centering, or residual centering. The
orthogonalize
function is the shortcut of the indProd
function
to make the residual-centered indicators products.
indProd(data, var1, var2, var3 = NULL, match = TRUE, meanC = TRUE, residualC = FALSE, doubleMC = TRUE, namesProd = NULL) orthogonalize(data, var1, var2, var3 = NULL, match = TRUE, namesProd = NULL)
data |
The desired data to be transformed. |
var1 |
Names or indices of the variables loaded on the first factor |
var2 |
Names or indices of the variables loaded on the second factor |
var3 |
Names or indices of the variables loaded on the third factor (for three-way interaction) |
match |
Specify |
meanC |
Specify |
residualC |
Specify |
doubleMC |
Specify |
namesProd |
The names of resulting products |
The original data attached with the products.
Sunthud Pornprasertmanit (psunthud@gmail.com) Alexander Schoemann (East Carolina University; schoemanna@ecu.edu)
Marsh, H. W., Wen, Z. & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9(3), 275–300. doi: 10.1037/1082-989X.9.3.275
Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. Structural Equation Modeling, 17(3), 374–391. doi: 10.1080/10705511.2010.488999
Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural Equation Modeling, 13(4), 497–519. doi: 10.1207/s15328007sem1304_1
probe2WayMC
For probing the two-way
latent interaction when the results are obtained from mean-centering, or
double-mean centering.
probe3WayMC
For probing the
three-way latent interaction when the results are obtained from
mean-centering, or double-mean centering.
probe2WayRC
For probing the two-way latent interaction when the results are obtained
from residual-centering approach.
probe3WayRC
For
probing the two-way latent interaction when the results are obtained from
residual-centering approach.
plotProbe
Plot the simple
intercepts and slopes of the latent interaction.
## Mean centering / two-way interaction / match-paired dat <- indProd(attitude[ , -1], var1 = 1:3, var2 = 4:6) ## Residual centering / two-way interaction / match-paired dat2 <- indProd(attitude[ , -1], var1 = 1:3, var2 = 4:6, match = FALSE, meanC = FALSE, residualC = TRUE, doubleMC = FALSE) ## Double-mean centering / two-way interaction / match-paired dat3 <- indProd(attitude[ , -1], var1 = 1:3, var2 = 4:6, match = FALSE, meanC = TRUE, residualC = FALSE, doubleMC = TRUE) ## Mean centering / three-way interaction / match-paired dat4 <- indProd(attitude[ , -1], var1 = 1:2, var2 = 3:4, var3 = 5:6) ## Residual centering / three-way interaction / match-paired dat5 <- orthogonalize(attitude[ , -1], var1 = 1:2, var2 = 3:4, var3 = 5:6, match = FALSE) ## Double-mean centering / three-way interaction / match-paired dat6 <- indProd(attitude[ , -1], var1 = 1:2, var2 = 3:4, var3 = 5:6, match = FALSE, meanC = TRUE, residualC = TRUE, doubleMC = TRUE) ## To add product-indicators to multiple-imputed data sets ## Not run: HSMiss <- HolzingerSwineford1939[ , c(paste0("x", 1:9), "ageyr","agemo")] set.seed(12345) HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5) age <- HSMiss$ageyr + HSMiss$agemo/12 HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9) library(Amelia) set.seed(12345) HS.amelia <- amelia(HSMiss, m = 3, p2s = FALSE) imps <- HS.amelia$imputations # extract a list of imputations ## apply indProd() to the list of data.frames imps2 <- lapply(imps, indProd, var1 = c("x1","x2","x3"), var2 = c("x4","x5","x6")) ## verify: lapply(imps2, head) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.