mardiaSkew: Finding Mardia's multivariate skewness

View source: R/dataDiagnosis.R

mardiaSkewR Documentation

Finding Mardia's multivariate skewness

Description

Finding Mardia's multivariate skewness of multiple variables

Usage

mardiaSkew(dat, use = "everything")

Arguments

dat

The target matrix or data frame with multiple variables

use

Missing data handling method from the stats::cov() function.

Details

The Mardia's multivariate skewness formula (Mardia, 1970) is

b_{1, d} = \frac{1}{n^2}\sum^n_{i=1}\sum^n_{j=1}\left[ \left(\bold{X}_i - \bold{\bar{X}} \right)^{'} \bold{S}^{-1} \left(\bold{X}_j - \bold{\bar{X}} \right) \right]^3,

where d is the number of variables, X is the target dataset with multiple variables, n is the sample size, \bold{S} is the sample covariance matrix of the target dataset, and \bold{\bar{X}} is the mean vectors of the target dataset binded in n rows. When the population multivariate skewness is normal, the \frac{n}{6}b_{1,d} is asymptotically distributed as \chi^2 distribution with d(d + 1)(d + 2)/6 degrees of freedom.

Value

A value of a Mardia's multivariate skewness with a test statistic

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/2334770")}

See Also

  • skew() Find the univariate skewness of a variable

  • kurtosis() Find the univariate excessive kurtosis of a variable

  • mardiaKurtosis() Find the Mardia's multivariate kurtosis of a set of variables

Examples


library(lavaan)
mardiaSkew(HolzingerSwineford1939[ , paste0("x", 1:9)])


semTools documentation built on April 3, 2025, 9:23 p.m.