View source: R/dataDiagnosis.R
| mardiaSkew | R Documentation |
Finding Mardia's multivariate skewness of multiple variables
mardiaSkew(dat, use = "everything")
dat |
The target matrix or data frame with multiple variables |
use |
Missing data handling method from the |
The Mardia's multivariate skewness formula (Mardia, 1970) is
b_{1, d} = \frac{1}{n^2}\sum^n_{i=1}\sum^n_{j=1}\left[
\left(\bold{X}_i - \bold{\bar{X}} \right)^{'} \bold{S}^{-1}
\left(\bold{X}_j - \bold{\bar{X}} \right) \right]^3,
where d is the number of variables, X is the target dataset
with multiple variables, n is the sample size, \bold{S} is
the sample covariance matrix of the target dataset, and \bold{\bar{X}}
is the mean vectors of the target dataset binded in n rows.
When the population multivariate skewness is normal, the
\frac{n}{6}b_{1,d} is asymptotically distributed as \chi^2
distribution with d(d + 1)(d + 2)/6 degrees of freedom.
A value of a Mardia's multivariate skewness with a test statistic
Sunthud Pornprasertmanit (psunthud@gmail.com)
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/2334770")}
skew() Find the univariate skewness of a variable
kurtosis() Find the univariate excessive
kurtosis of a variable
mardiaKurtosis() Find the Mardia's multivariate
kurtosis of a set of variables
library(lavaan)
mardiaSkew(HolzingerSwineford1939[ , paste0("x", 1:9)])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.