PLI: Perturbed-Law based sensitivity Indices (PLI) for failure...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/PLI.R

Description

PLI computes the Perturbed-Law based Indices (PLI), also known as the Density Modification Based Reliability Sensitivity Indices (DMBRSI), which are sensitivity indices related to a probability of exceedence of a model output (i.e. a failure probability), estimated by a Monte Carlo method. See Lemaitre et al. (2015).

Usage

1
2
PLI(failurepoints,failureprobabilityhat,samplesize,deltasvector,
       InputDistributions,type="MOY",samedelta=TRUE)

Arguments

failurepoints

a matrix of failure points coordinates, one column per variable.

failureprobabilityhat

the estimation of failure probability P through rough Monte Carlo method.

samplesize

the size of the sample used to estimate P. One must have Pchap=dim(failurepoints)[1]/samplesize

deltasvector

a vector containing the values of delta for which the indices will be computed.

InputDistributions

a list of list. Each list contains, as a list, the name of the distribution to be used and the parameters. Implemented cases so far:

  • For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel. Using Gumber requires the package evd.

  • For a variance perturbation: Gaussian, Uniform.

type

a character string in which the user will specify the type of perturbation wanted. The sense of "deltasvector" varies according to the type of perturbation:

  • type can take the value "MOY",in which case deltasvector is a vector of perturbated means.

  • type can take the value "VAR",in which case deltasvector is a vector of perturbated variances, therefore needs to be positive integers.

samedelta

a boolean used with the value "MOY" for type.

  • If it is set at TRUE, the mean perturbation will be the same for all the variables.

  • If not, the mean perturbation will be new_mean = mean+sigma*delta where mean, sigma are parameters defined in InputDistributions and delta is a value of deltasvector.

Value

PLI returns a list of size 2, including:

Author(s)

Paul Lemaitre

References

P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-1223.

E. Borgonovo and B. Iooss, 2017, Moment independent importance measures and a common rationale, In: Springer Handbook on UQ, R. Ghanem, D. Higdon and H. Owhadi (Eds).

See Also

PLIquantile

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
## Not run: 

# Model: Ishigami function with a treshold at -7
# Failure points are those < -7

  distributionIshigami = list()
	for (i in 1:3){
		distributionIshigami[[i]]=list("unif",c(-pi,pi))
		distributionIshigami[[i]]$r=("runif")
	}
  
# Monte Carlo sampling to obtain failure points

  N = 10^5
	X = matrix(0,ncol=3,nrow=N)
	for( i in 1:3){
    X[,i] = runif(N,-pi,pi)
    }
     
	T = ishigami.fun(X)
	s = sum(as.numeric(T < -7)) # Number of failure
	pdefchap = s/N      # Failure probability
	ptsdef = X[T < -7,]	# Failure points
	
# sensitivity indices with perturbation of the mean 
  
	v_delta = seq(-3,3,1/20) 
	Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
		deltasvector=v_delta,InputDistributions=distributionIshigami,type="MOY",
		samedelta=TRUE)
	BIshm = Toto[[1]]
	SIshm = Toto[[2]]

	par(mar=c(4,5,1,1))
	plot(v_delta,BIshm[,2],ylim=c(-4,4),xlab=expression(delta),
		ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
	points(v_delta,BIshm[,1],col="darkgreen",pch=15,cex=1.5)
	points(v_delta,BIshm[,3],col="red",pch=17,cex=1.5)
	lines(v_delta,BIshm[,2]+1.96*SIshm[,2],col="black"); 
	lines(v_delta,BIshm[,2]-1.96*SIshm[,2],col="black")
	lines(v_delta,BIshm[,1]+1.96*SIshm[,1],col="darkgreen"); 
	lines(v_delta,BIshm[,1]-1.96*SIshm[,1],col="darkgreen")
	lines(v_delta,BIshm[,3]+1.96*SIshm[,3],col="red"); 
	lines(v_delta,BIshm[,3]-1.96*SIshm[,3],col="red");
	abline(h=0,lty=2)
	legend(0,3,legend=c("X1","X2","X3"),
		col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
  
# sensitivity indices with perturbation of the variance 

	v_delta = seq(1,5,1/4) # user parameter. (the true variance is 3.29)	
	Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
		deltasvector=v_delta,InputDistributions=distributionIshigami,type="VAR",
		samedelta=TRUE)
	BIshv=Toto[[1]]
	SIshv=Toto[[2]]

	par(mfrow=c(2,1),mar=c(1,5,1,1)+0.1)
	plot(v_delta,BIshv[,2],ylim=c(-.5,.5),xlab=expression(V_f),
		ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
	points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
	points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
	lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black"); 
	lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
	lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen"); 
	lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
	lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red"); 
	lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");

	par(mar=c(4,5.1,1.1,1.1))
	plot(v_delta,BIshv[,2],ylim=c(-30,.7),xlab=expression(V[f]),
		ylab=expression(hat(S[i*delta])),pch=19,cex=1.5)
	points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
	points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
	lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black"); 
	lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
	lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen"); 
	lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
	lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red"); 
	lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");
	legend(2.5,-10,legend=c("X1","X2","X3"),col=c("darkgreen","black","red"),
		pch=c(15,19,17),cex=1.5)
  
  
## End(Not run)

Example output



sensitivity documentation built on Sept. 24, 2017, 1:05 a.m.