View source: R/PLIsuperquantile_multivar.r
PLIsuperquantile_multivar | R Documentation |
PLIquantile_multivar computes the Perturbed-Law based Indices (PLI) for superquantile and simultaneous perturbations of the means of 2 inputs, estimated by a Monte Carlo method.
PLIsuperquantile_multivar(order,x,y,inputs,deltasvector,InputDistributions,
samedelta=TRUE, percentage=TRUE,nboot=0,conf=0.95,bootsample=TRUE,bias=TRUE)
order |
the order of the quantile to estimate. |
x |
the matrix of simulation points coordinates, one column per variable. |
y |
the vector of model outputs. |
inputs |
the vector of the two inputs' indices for which the indices will be computed. |
deltasvector |
a vector containing the values of the perturbed means for which the indices will be computed. Warning: if samedelta=FALSE, deltasvector has to be the vector of deltas (mean perturbations) |
InputDistributions |
a list of list. Each list contains, as a list,
the name of the distribution to be used and the parameters.
Implemented cases so far (for a mean perturbation):
Gaussian, Uniform, Triangle, Left Trucated Gaussian,
Left Truncated Gumbel. Using Gumbel requires the package |
samedelta |
a boolean used with the value "MOY" for type.
|
percentage |
a boolean that defines the formula used for the PLI.
|
nboot |
the number of bootstrap replicates. |
conf |
the confidence level for bootstrap confidence intervals. |
bootsample |
If TRUE, the uncertainty about the original quantile estimation is taken into account in the PLI confidence intervals (see Iooss et al., 2021). If FALSE, standard confidence intervals are computed for the PLI. It mainly changes the CI at small delta values. |
bias |
defines the version of PLI-superquantile:
|
This function does not allow perturbations on the variance of the inputs' distributions.
PLIsuperquantile_multivar
returns a list of matrices
(delta twist of input 1 (in rows) vs. delta twist of input 2 (in columns))
containing the following components:
PLI |
the PLI. |
PLICIinf |
the bootstrap lower confidence interval values of the PLI. |
PLICIsup |
the bootstrap upper confidence interval values of the PLI. |
quantile |
the perturbed quantile. |
quantileCIinf |
the bootstrap lower confidence interval values of the perturbed superquantile. |
quantileCIsup |
the bootstrap upper confidence interval values of the perturbed superquantile. |
Bertrand Iooss
T. Delage, R. Sueur and B. Iooss, 2018, Robustness analysis of epistemic uncertainties propagation studies in LOCA assessment thermal-hydraulic model, ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018), Lucca, Italy, May 13-19, 2018.
B. Iooss, V. Verges and V. Larget, 2022, BEPU robustness analysis via perturbed law-based sensitivity indices, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236:855-865.
P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, 2015, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-1223.
R. Sueur, N. Bousquet, B. Iooss and J. Bect, 2016, Perturbed-Law based sensitivity Indices for sensitivity analysis in structural reliability, Proceedings of the SAMO 2016 Conference, Reunion Island, France, December 2016.
R. Sueur, B. Iooss and T. Delage, 2017, Sensitivity analysis using perturbed-law based indices for quantiles and application to an industrial case, 10th International Conference on Mathematical Methods in Reliability (MMR 2017), Grenoble, France, July 2017.
PLI, PLIquantile, PLIsuperquantile, PLIquantile_multivar
# Model: 3D function
distribution = list()
for (i in 1:3) distribution[[i]]=list("norm",c(0,1))
N = 10000
X = matrix(0,ncol=3,nrow=N)
for(i in 1:3) X[,i] = rnorm(N,0,1)
Y = 2 * X[,1] + X[,2] + X[,3]/2
alpha <- 0.95
nboot <- 20 # put nboot=200 for consistency
q95 = quantile(Y,alpha)
sq95a <- mean(Y*(Y>q95)/(1-alpha)) ; sq95b <- mean(Y[Y>q95])
v_delta = seq(-1,1,1/10)
toto12 = PLIsuperquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,
InputDistributions=distribution,samedelta=TRUE,bias=FALSE)
toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,InputDistributions=distribution,
type="MOY",samedelta=TRUE,nboot=0,bias=FALSE)
par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),,ylim=c(-1,1),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
abline(h=0,lty=2)
legend(-1,1.,legend=c("X1","X2","X3","X1X2"),col=c("darkgreen","black","red","blue"),
pch=c(15,19,17,16),cex=1.5)
# with bootstrap (put in comment because too long for the CRAN tests)
v_delta = seq(-1,1,2/10)
toto12 = PLIsuperquantile_multivar(alpha,X,Y,c(1,2),deltasvector=v_delta,
InputDistributions=distribution,samedelta=TRUE,nboot=nboot,bootsample=FALSE,bias=FALSE)
toto = PLIsuperquantile(alpha,X,Y,deltasvector=v_delta,InputDistributions=distribution,
type="MOY",samedelta=TRUE,nboot=nboot,bootsample=FALSE,bias=FALSE)
par(mar=c(4,5,1,1))
plot(v_delta,diag(toto12$PLI),ylim=c(-1,1),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=16,cex=1.5,col="blue")
points(v_delta,toto$PLI[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,toto$PLI[,2],col="black",pch=19,cex=1.5)
points(v_delta,toto$PLI[,3],col="red",pch=17,cex=1.5)
lines(v_delta,diag(toto12$PLICIinf),col="blue")
lines(v_delta,diag(toto12$PLICIsup),col="blue")
lines(v_delta,toto$PLICIinf[,2],col="black")
lines(v_delta,toto$PLICIsup[,2],col="black")
lines(v_delta,toto$PLICIinf[,1],col="darkgreen")
lines(v_delta,toto$PLICIsup[,1],col="darkgreen")
lines(v_delta,toto$PLICIinf[,3],col="red")
lines(v_delta,toto$PLICIsup[,3],col="red")
abline(h=0,lty=2)
legend(-1,1,legend=c("X1","X2","X3","X1X2"),col=c("darkgreen","black","red","blue"),
pch=c(15,19,17,16),cex=1.5)
###################################################
# another visualizations by using the plotrix,
# viridisLite, lattice and grid packages (from Vanessa Verges)
library(plotrix)
parameters = list(colors=c("darkgreen","black","red"),symbols=c(15,19,17))
par(mar=c(4,5,1,1),xpd=TRUE)
plotCI(v_delta,diag(toto12$PLI),ui=diag(toto12$PLICIsup),li=diag(toto12$PLICIinf),
xlab=expression(delta),ylab=expression(hat(PLI[i*delta])),
main=bquote("PLI-superquantile (N ="~.(N) ~ ","~alpha~"="~.(alpha)~
") on "~X[1]~"and"~X[2]~"of Y="~2*X[1] + X[2] + X[3]/2),
cex=1.5,col="blue",pch=16)
for (i in 1:3){
plotCI(v_delta,toto$PLI[,i],ui=toto$PLICIsup[,i],li=toto$PLICIinf[,i],
cex=1.5,col=parameters$colors[i],pch=parameters$symbols[i],
add=TRUE)
}
abline(h=0,lty=2)
legend("topleft",legend=c("X1","X2","X3","X1X2"),
col=c(parameters$colors,"blue"),pch=c(parameters$symbols,16),cex=1.5)
# Visu of all the PLIs (at any paired combinations of deltas)
library(viridisLite)
library(lattice)
library(grid)
colnames(toto12$PLI) = round(v_delta,2)
rownames(toto12$PLI) = round(v_delta,2)
coul = viridis(100)
levelplot(toto12$PLI,col.regions=coul,main=bquote(hat(PLI)[superquantile[~X[1]~X[2]]]),
xlab=bquote(delta[X~.(1)]),ylab=bquote(delta[X~.(2)]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.