backfit | R Documentation |
Backfit from PNSS or PCA scores to a representative configuration
backfit(scores, x, type="pnss", size=1)
scores |
n x p matrix of scores |
x |
An object that is the output of either pnss3d (if type="pnss") or procGPA (if type="pca") |
type |
Either "pnss" for PNSS or "pca" for PCA |
size |
The centroid size of the backfitted configuration. The default is 1 but one can rescale the backfitting if desired. |
A k x m matrix of co-ordinates of the backfitted configuration
Ian Dryden
Dryden, I.L., Kim, K., Laughton, C.A. and Le, H. (2019). Principal nested shape space analysis of molecular dynamics data. Annals of Applied Statistics, 13, 2213-2234.
Jung, S., Dryden, I.L. and Marron, J.S. (2012). Analysis of principal nested spheres. Biometrika, 99, 551-568.
pns, pns4pc, plot3darcs
ans <- pnss3d( macf.dat, sphere.type="BIC", n.pc=8) y <- backfit( ans$PNS$scores[1,] , ans ,type="pnss") riemdist( macf.dat[,,1] , y ) #should be close to zero ans2 <- procGPA( macf.dat, tangentcoords="partial") y <- backfit( ans2$scores[1,] , ans2 ,type="pca") riemdist( macf.dat[,,1] , y ) #should be close to zero
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.