Canonical variate analysis for shapes

Description

Carry out canonical variate analysis for shapes (in two or more groups)

Usage

1
shapes.cva(X,groups,scale=TRUE,ncv=2)

Arguments

X

Input k x m x n real array of the configurations, where k is the number of points, m is the number of dimensions, and n is the sample size.

groups

The group labels

scale

Logical, indicating if Procrustes scaling should be carried out

ncv

Number of canonical variates to display

Value

A plot if ncv=2 or 3 and the Canonical Variate Scores

Author(s)

Ian Dryden

References

Dryden, I.L. and Mardia, K.V. (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

procGPA

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
#2D example : female and male apes   (cf. Dryden and Mardia, 1998)

data(pongof.dat)
data(pongom.dat) 
data(panm.dat)
data(panf.dat)

apes   <- groupstack( pongof.dat , pongom.dat , panm.dat, panf.dat )

shapes.cva( apes$x, apes$groups) 

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.