R/sftrans.R

Defines functions sftrans.default sftrans.Arma sftrans.Zpg sftrans

Documented in sftrans sftrans.Arma sftrans.default sftrans.Zpg

## Copyright (C) 1999 Paul Kienzle
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

## usage: [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)
##
## Transform band edges of a generic lowpass filter (cutoff at W=1)
## represented in splane zero-pole-gain form.  W is the edge of the
## target filter (or edges if band pass or band stop). Stop is true for
## high pass and band stop filters or false for low pass and band pass
## filters. Filter edges are specified in radians, from 0 to pi (the
## nyquist frequency).
##
## Theory: Given a low pass filter represented by poles and zeros in the
## splane, you can convert it to a low pass, high pass, band pass or 
## band stop by transforming each of the poles and zeros individually.
## The following table summarizes the transformation:
##
## Transform         Zero at x                  Pole at x
## ----------------  -------------------------  ------------------------
## Low Pass          zero: Fc x/C               pole: Fc x/C
## S -> C S/Fc       gain: C/Fc                 gain: Fc/C 
## ----------------  -------------------------  ------------------------
## High Pass         zero: Fc C/x               pole: Fc C/x
## S -> C Fc/S       pole: 0                    zero: 0
##                   gain: -x                   gain: -1/x
## ----------------  -------------------------  ------------------------
## Band Pass         zero: b +- sqrt(b^2-FhFl)   pole: b +- sqrt(b^2-FhFl)
##        S^2+FhFl   pole: 0                    zero: 0
## S -> C --------   gain: C/(Fh-Fl)            gain: (Fh-Fl)/C
##        S(Fh-Fl)   b=x/C (Fh-Fl)/2            b=x/C (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
## Band Stop         zero: b +- sqrt(b^2-FhFl)   pole: b +- sqrt(b^2-FhFl)
##        S(Fh-Fl)   pole: +-sqrt(-FhFl)         zero: +-sqrt(-FhFl)
## S -> C --------   gain: -x                   gain: -1/x
##        S^2+FhFl   b=C/x (Fh-Fl)/2            b=C/x (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
## Bilinear          zero: (2+xT)/(2-xT)        pole: (2+xT)/(2-xT)
##      2 z-1        pole: -1                   zero: -1
## S -> - ---        gain: (2-xT)/T             gain: (2-xT)/T
##      T z+1
## ----------------  -------------------------  ------------------------
##
## where C is the cutoff frequency of the initial lowpass filter, Fc is
## the edge of the target low/high pass filter and [Fl,Fh] are the edges
## of the target band pass/stop filter.  With abundant tedious algebra,
## you can derive the above formulae yourself by substituting the
## transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a
## pole at x, and converting the result into the form:
##
##    H(S)=g prod(S-Xi)/prod(S-Xj)
##
## The transforms are from the references.  The actual pole-zero-gain
## changes I derived myself.
##
## Please note that a pole and a zero at the same place exactly cancel.
## This is significant for High Pass, Band Pass and Band Stop filters
## which create numerous extra poles and zeros, most of which cancel.
## Those which do not cancel have a "fill-in" effect, ext} #ing the 
## shorter of the sets to have the same number of as the longer of the
## sets of poles and zeros (or at least split the difference in the case
## of the band pass filter).  There may be other opportunistic
## cancellations but I will not check for them.
##
## Also note that any pole on the unit circle or beyond will result in
## an unstable filter.  Because of cancellation, this will only happen
## if the number of poles is smaller than the number of zeros and the
## filter is high pass or band pass.  The analytic design methods all
## yield more poles than zeros, so this will not be a problem.
## 
## References: 
##
## Proakis & Manolakis (1992). Digital Signal Processing. New York:
## Macmillan Publishing Company.

## Author: Paul Kienzle <pkienzle@users.sf.net>

## 2000-03-01 pkienzle@kienzle.powernet.co.uk
##       leave transformed Sg as a complex value since cheby2 blows up
##       otherwise (but only for odd-order low-pass filters).  bilinear
##       will return Zg as real, so there is no visible change to the
##       user of the IIR filter design functions.
## 2001-03-09 pkienzle@kienzle.powernet.co.uk
##       return real Sg; don't know what to do for imaginary filters

sftrans <- function(Sz, ...) UseMethod("sftrans")

sftrans.Zpg <- function(Sz, W, stop = FALSE, ...)  
  sftrans.default(Sz$zero, Sz$pole, Sz$gain, W, stop)

sftrans.Arma <- function(Sz, W, stop = FALSE, ...)  
  as.Arma(sftrans(as.Zpg(Sz), W, stop))

sftrans.default <- function(Sz, Sp, Sg, W, stop = FALSE, ...)  {

  C = 1
  p = length(Sp)
  z = length(Sz)
  if (z > p || p == 0)
    stop("sftrans: must have at least as many poles as zeros in s-plane")

  if (length(W)==2) {
    Fl = W[1]
    Fh = W[2]
    if (stop) {
## ----------------  -------------------------  ------------------------
## Band Stop         zero: b +- sqrt(b^2-FhFl)   pole: b +- sqrt(b^2-FhFl)
##        S(Fh-Fl)   pole: +-sqrt(-FhFl)         zero: +-sqrt(-FhFl)
## S -> C --------   gain: -x                   gain: -1/x
##        S^2+FhFl   b=C/x (Fh-Fl)/2            b=C/x (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
      Sg = Sg * Re(prod(-Sz)/prod(-Sp))
      b = (C*(Fh-Fl)/2)/Sp
      Sp = c(b+sqrt(0i+b^2-Fh*Fl), b-sqrt(0i+b^2-Fh*Fl))
      extend = c(sqrt(0i+-Fh*Fl), -sqrt(0i+-Fh*Fl))
      if (is.null(Sz) || length(Sz) == 0)
        Sz = extend[1 + (1:(2*p)) %% 2]
      else {
        b = (C*(Fh-Fl)/2) / Sz
        Sz = c(b+sqrt(0i+b^2-Fh*Fl), b-sqrt(0i+b^2-Fh*Fl))
        if (p > z)
          Sz = c(Sz, extend[1 + ((1:2)*(p-z)) %% 2])
      }
    } else {
## ----------------  -------------------------  ------------------------
## Band Pass         zero: b +- sqrt(b^2-FhFl)   pole: b +- sqrt(b^2-FhFl)
##        S^2+FhFl   pole: 0                    zero: 0
## S -> C --------   gain: C/(Fh-Fl)            gain: (Fh-Fl)/C
##        S(Fh-Fl)   b=x/C (Fh-Fl)/2            b=x/C (Fh-Fl)/2
## ----------------  -------------------------  ------------------------
      Sg = Sg * (C/(Fh-Fl))^(z-p)
      b = Sp*(Fh-Fl)/(2*C)
      Sp = c(b+sqrt(0i+b^2-Fh*Fl), b-sqrt(0i+b^2-Fh*Fl))
      if (is.null(Sz) || length(Sz) == 0)
        Sz = numeric(p)
      else {
        b = Sz*(Fh-Fl) / (2*C)
        Sz = c(b+sqrt(0i+b^2-Fh*Fl), b-sqrt(0i+b^2-Fh*Fl))
        if (p>z)
          Sz = c(Sz, numeric(p-z))
      }
    }
  } else {
    Fc = W
    if (stop) {
## ----------------  -------------------------  ------------------------
## High Pass         zero: Fc C/x               pole: Fc C/x
## S -> C Fc/S       pole: 0                    zero: 0
##                   gain: -x                   gain: -1/x
## ----------------  -------------------------  ------------------------
      Sg = Sg * Re(prod(-Sz)/prod(-Sp))
      Sp = C * Fc / Sp
      if (is.null(Sz) || length(Sz) == 0)
        Sz = numeric(p)
      else {
        Sz = C * Fc / Sz
        if (p > z) 
          Sz = c(Sz, numeric(p-z))
      }
    } else {
## ----------------  -------------------------  ------------------------
## Low Pass          zero: Fc x/C               pole: Fc x/C
## S -> C S/Fc       gain: C/Fc                 gain: Fc/C 
## ----------------  -------------------------  ------------------------
      Sg = Sg * (C/Fc)^(z-p)
      Sp = Fc * Sp / C
      Sz = Fc * Sz / C
    }
  }
  Zpg(zero = Sz, pole = Sp, gain = Sg)
} 
     

  

Try the signal package in your browser

Any scripts or data that you put into this service are public.

signal documentation built on June 26, 2024, 9:06 a.m.