Nothing
#' @title Create a simts TS object using time series data
#' @description Takes a time series and turns it into a time series oriented object that can be used for summary and graphing functions in the \code{simts} package.
#' @param data A one-column \code{matrix}, \code{data.frame}, or a numeric \code{vector}.
#' @param start A \code{numeric} that provides the time of the first observation.
#' @param end A \code{numeric} that provides the time of the last observation.
#' @param freq A \code{numeric} that provides the rate/frequency at which the time series is sampled. The default value is 1.
#' @param data_name A \code{string} that contains the name of the time series data.
#' @param unit_ts A \code{string} that contains the unit of measure of the time series. The default value is \code{NULL}.
#' @param unit_time A \code{string} that contains the unit of measure of the time. The default value is \code{NULL}.
#' @param name_ts A \code{string} that provides an identifier for the time series data. Default value is \code{NULL}.
#' @param name_time A \code{string} that provides an identifier for the time. Default value is \code{NULL}.
#' @param Time A numeric or character \code{vector} containing the times of observations. Default value is \code{NULL}. See \code{x} object in \code{as.Date} function.
#' @param time_format A \code{string} specifiying the format of 'Time'. If not provided, 'Time' is assumed to be all integers. Default value is \code{NULL}. See \code{format} argument in \code{as.Date} function.
#' @return A \code{gts} object
#' @export
#' @author James Balamuta and Wenchao Yang
#' @examples
#' m = data.frame(rnorm(50))
#' x = gts(m, unit_time = 'sec', name_ts = 'example')
#' plot(x)
#'
#' x = gen_gts(50, WN(sigma2 = 1))
#' x = gts(x, freq = 100, unit_time = 'sec')
#' plot(x)
gts = function(data, start = 0, end = NULL, freq = 1, unit_ts = NULL, unit_time = NULL, name_ts = NULL, name_time = NULL, data_name = NULL, Time = NULL, time_format = NULL) {
# Handle unevenly spaced data
if (!is.null(Time)) {
if (!is.null(time_format)) {
Time = as.Date(Time, format = time_format)
}
# else if (!all(Time - floor(Time) == 0)) {
# stop("'Time' must only contain integer values if 'time_format' is NULL.")
# }
if (length(data) != length(Time)){
stop('"data" and "Time" must have equal length.')
}
}
# 1. requirement for 'data'
# Handle NA values in 'data'
if (is.factor(data)){
data = as.numeric(as.character(data))
}
# Force data.frame to matrix
if (is.data.frame(data)){
data = data.matrix(data)
}
# Check if the data is in matrix form
if (is.matrix(data)) {
# Check ncol
ncolumn = ncol(data)
if(ncolumn != 1){
stop("'data' must have one column.")
}
} else {
data = data.matrix(data) # convert vector to matrix
}
ndata = nrow(data)
colnames(data) = if(is.null(name_ts)) 'Observed' else name_ts
if(ndata == 0) {
stop("Not a valid data object! Please supply a data set with one column that is in either a data.frame, matrix, or numeric object.")
}
# 2. requirement for 'freq'
if(!is(freq,"numeric") || length(freq) != 1){ stop("'freq' must be one numeric number.") }
if(freq <= 0) { stop("'freq' must be larger than 0.") }
# 3. requirements for 'start' and 'end'
if( is.numeric(start)==F && is.numeric(end)==F){
stop("'start' or 'end' must be specified.")}
if(is.null(start)==F && is.null(end)==F && (end-start)!= ((ndata-1)/freq) ){
stop("end-start == (ndata-1)/freq must be TRUE.")
}
# freq conversion (unit conversion is handled in graphical function)
if ( is.null(end) ){
end = start + (ndata - 1)/freq} else if ( is.null(start) ){
start = end - (ndata - 1)/freq}
# 4. requirement for 'unit_time'
if(!is.null(unit_time)){
if(!unit_time %in% c('ns', 'ms', 'sec', 'second', 'min', 'minute', 'hour', 'day', 'mon', 'month', 'year')){
stop('The supported units are "ns", "ms", "sec", "min", "hour", "day", "month", "year". ')
}
}
# x = 0:(ndata-1)
# x = seq(from = 0, to = (ndata-1), length.out = ndata)
# x = x/freq ###when generate the object, not deal with freq
out = structure(data,
start = start,
end= end, # start and end will not be null now
freq = freq,
unit_ts = unit_ts,
unit_time = unit_time,
name_ts = name_ts,
name_time = name_time,
data_name = data_name,
Time = Time,
class = c("gts","matrix"))
out
}
#' @title Simulate a simts TS object using a theoretical model
#' @description Create a \code{gts} object based on a time series model.
#' @param n An \code{integer} containing the length of the time series.
#' @param model A \code{ts.model} or \code{simts} object containing the available models in the simts package.
#' @param start A \code{numeric} that provides the time of the first observation.
#' @param end A \code{numeric} that provides the time of the last observation.
#' @param freq A \code{numeric} that provides the rate of samples. Default value is 1.
#' @param unit_ts A \code{string} that contains the unit expression of the time series. Default value is \code{NULL}.
#' @param unit_time A \code{string} that contains the unit expression of the time. Default value is \code{NULL}.
#' @param name_ts A \code{string} that provides an identifier for the time series data. Default value is \code{NULL}.
#' @param name_time A \code{string} that provides an identifier for the time. Default value is \code{NULL}.
#' @return A \code{gts} object
#' @export
#' @author James Balamuta and Wenchao Yang
#' @details
#' This function accepts either a \code{ts.model} object (e.g. AR1(phi = .3, sigma2 =1) + WN(sigma2 = 1)) or a \code{simts} object.
#' @examples
#' # Set seed for reproducibility
#' set.seed(1336)
#' n = 1000
#'
#' # AR1 + WN
#' model = AR1(phi = .5, sigma2 = .1) + WN(sigma2=1)
#' x = gen_gts(n, model)
#' plot(x)
#'
#' # Reset seed
#' set.seed(1336)
#'
#' # GM + WN
#' # Convert from AR1 to GM values
#' m = ar1_to_gm(c(.5,.1),10)
#'
#' # Beta = 6.9314718, Sigma2_gm = 0.1333333
#' model = GM(beta = m[1], sigma2_gm = m[2]) + WN(sigma2=1)
#' x2 = gen_gts(n, model, freq = 10, unit_time = 'sec')
#' plot(x2)
#'
#' # Same time series
#' all.equal(x, x2, check.attributes = FALSE)
gen_gts = function(n, model, start = 0, end = NULL, freq = 1, unit_ts = NULL, unit_time = NULL, name_ts = NULL, name_time = NULL){
# 1. Do we have a valid model?
if(!(is.ts.model(model))){
stop("model must be created from a ts.model or simts object using a supported component (e.g. AR1(), ARMA(p,q), DR(), RW(), QN(), and WN(). ")
}
# 2. requirement for 'freq'
if(!is(freq,"numeric") || length(freq) != 1){ stop("'freq' must be one numeric number.") }
if(freq <= 0) { stop("'freq' must be larger than 0.") }
# 3. requirements for 'start' and 'end'
if( is.numeric(start)==F && is.numeric(end)==F){
stop("'start' or 'end' must be specified.")}
if(is.null(start)==F && is.null(end)==F && (end-start)!= ((n-1)/freq) ){
stop("end-start == (N-1)/freq must be TRUE.")
}
if ( is.null(end) ){
end = start + (n - 1)/freq
}else if ( is.null(start) ){ # freq conversion (unit conversion is handled in graphical function)
start = end - (n - 1)/freq
}
# 4. 'unit_time'
if(!is.null(unit_time)){
if(!unit_time %in% c('ns', 'ms', 'sec', 'second', 'min', 'minute', 'hour', 'day', 'mon', 'month', 'year')){
stop('The supported units are "ns", "ms", "sec", "min", "hour", "day", "month", "year". ')
}
}
# Information Required by simts:
desc = model$desc
obj = model$obj.desc
print = model$print
# Identifiability issues
if(any( count_models(desc)[c("DR","QN","RW","WN")] >1)){
stop("Two instances of either: DR, QN, RW, or WN have been detected. As a result, the model will have identifiability issues. Please submit a new model.")
}
if(!model$starting){
if(any(model$desc == "DR") && freq != 1){
model$theta[model$process.desc == "DR"] = model$theta[model$process.desc == "DR"]/freq
}
theta = model$theta
# Convert from AR1 to GM
if(any(model$desc == "GM")){
theta = conv.gm.to.ar1(theta, model$process.desc, freq)
}
out = gen_model(n, theta, desc, obj)
}else{
stop("Need to supply initial values within the ts.model object.")
}
colnames(out) = if(is.null(name_ts)) 'Observed' else name_ts
# reupdate desc for plotting
desc = paste0(model$desc, "()", collapse = " + ")
out = structure(.Data = out,
start = start,
end = end, # start and end will not be null now
desc = desc,
freq = freq,
unit_ts = unit_ts,
unit_time = unit_time,
name_ts = name_ts,
name_time = name_time,
model = model,
print = print,
simulated = TRUE,
class = c("gts","matrix"))
out
}
#' @title Convert Unit of Time Series Data
#' @description Manipulate the units of time to different ones
#' @keywords internal
#' @export
#' @param x A \code{vector} containing the values on x-axis.
#' @param from.unit A \code{string} indicating the unit which the data is converted from.
#' @param to.unit A \code{string} indicating the unit which the data is converted to.
#' @details
#' The supported units are "ns"(nanosecond), "ms"(millisecond), "sec", "min", "hour", "day", "month", and "year".
#' Make sure \code{from.unit} and \code{to.unit} are not \code{NULL} before it is passed to this function.
#' @return A \code{list} with the following structure:
#' \describe{
#' \item{x}{Data}
#' \item{converted}{A \code{boolean} indicating whether conversion is made}
#' }
#' @examples
#' x = seq(60, 3600, 60)
#' unitConversion(x, 'sec', 'min')
#' y = 1:10
#' unitConversion(y, 'hour', 'sec')
unitConversion = function(x, from.unit, to.unit){
#ns, ms, second, min, hour, day, month, year
unit = c(ns = 1, ms = 2,se = 3, mi = 4, ho = 5, da = 6, mo = 7, ye = 8)
#assume 1 month = 30 days
ratio = c(1E6, 1E3, 60, 60, 24, 30, 12)
from.unit.1 = substr(from.unit, 1, 2)
to.unit.1 = substr(to.unit, 1, 2)
#check unit:
no.convert = F
if(from.unit.1 == to.unit.1){no.convert = T}
if(is.na(unit[from.unit.1]) ) {
message = paste('No such unit: ', from.unit, '. Supported units are "ns"(nanosecond), "ms"(millisecond), "sec", "min", "hour", "day", "month", and "year". Conversion is terminated.', sep = '')
warning(message); no.convert = T}
if(is.na(unit[to.unit.1]) ) {
message = paste('No such unit: ', to.unit, '. Supported units are "ns"(nanosecond), "ms"(millisecond), "sec", "min", "hour", "day", "month", and "year". Conversion is terminated.', sep = '')
warning(message); no.convert = T}
if(!no.convert){
#print out warning when day is convert to month, or month is converted to day.
conversionRange = unit[from.unit.1] : unit[to.unit.1]
if(6 %in% conversionRange && 7 %in% conversionRange){
warning('Unit conversion might be wrong because this function simply assumes 1 month = 30 days.')
}
}
if(!no.convert){
if(unit[from.unit.1] > unit[to.unit.1]){
temp = ratio[unit[to.unit.1]: (unit[from.unit.1]-1)]
multiplier = prod(temp)
x = x*multiplier
}else{
temp = ratio[unit[from.unit.1]: (unit[to.unit.1]-1) ]
multiplier = prod(temp)
x = x/multiplier
}
}
obj = list(x = x, converted = !no.convert)
return(obj)
}
#' @title Plot simts Time Series Data
#' @description Plot simts Time Series Data generated by gts or gen_gts.
#' @method plot gts
#' @export
#' @keywords internal
#' @param x A \code{gts} object
#' @param evenly A \code{boolean} indicating whether the time series is evenly spaced or not.
#' @param xlab A \code{string} that gives a title for the x axis.
#' @param ylab A \code{string} that gives a title for the y axis.
#' @param main A \code{string} that gives an overall title for the plot.
#' @param couleur A \code{string} that gives a couleuror for the line.
#' @param ... additional arguments affecting the plot produced.
#' @return A plot containing the graph of the simts time series.
#' @importFrom graphics axis.Date
#' @author Justin Lee and Stéphane Guerrier
plot.gts = function(x, evenly = TRUE, xlab = NULL, ylab = NULL, main = NULL, couleur = "blue4", ...){
unit_ts = attr(x, 'unit_ts')
name_ts = attr(x, 'name_ts')
unit_time = attr(x, 'unit_time')
name_time = attr(x, 'name_time')
start = attr(x, 'start')
end = attr(x, 'end')
freq = attr(x, 'freq')
title_x = attr(x, 'print')
simulated = attr(x, 'simulated')
Time = attr(x, 'Time')
n_x = length(x)
if (n_x == 0){stop('Time series is empty!')}
if(!is(x,"gts")){stop('object must be a gts object. Use functions gts() or gen_gts() to create it.')}
# ----- Labels
if (!is.null(xlab)){
name_time = xlab
}
if (!is.null(ylab)){
name_ts = ylab
}
if (is.null(name_time)){
name_time = "Time"
}
if (is.null(name_ts)){
name_ts = "Observation"
}
if (!is.null(unit_time)){
if (inherits(unit_time, "name") || inherits(unit_time, "call")){
name_time = comb(name_time, " (", unit_time, ")")
}else{
name_time = paste(name_time, " (", unit_time, ")", sep = "")
}
}
if (!is.null(unit_ts)){
if (inherits(unit_ts, "name") || inherits(unit_ts, "call") ){
name_ts = comb(name_ts, " (", unit_ts, ")")
}else{
name_ts = paste(name_ts, " (", unit_ts, ")", sep = "")
}
}
if (is.null(main)){
if (!is.null(simulated)){
main = title_x
}else{
if (is.null(attr(x, "data_name"))){
main = "Time series"
}else{
main = attr(x, "data_name")
}
}
}
# ----- Handle unevenly spaced data
if (evenly == FALSE){
n_time = as.numeric(Time)[length(as.numeric(Time))] - as.numeric(Time)[1] + 1
start = as.numeric(Time)[1]
end = as.numeric(Time)[length(as.numeric(Time))]
scales = seq(start, end)
# new_ts is the complete evenly spaced data
# (replace missing ts data with mean of all available data)
new_ts = rep(NA, n_time)
new_ts[as.numeric(Time) - start + 1] = as.numeric(x)
new_ts = ifelse(is.na(new_ts), mean(new_ts, na.rm=TRUE), new_ts)
# ----- Plotting
# Make frame
if (is.null(Time)){
scales = scales - scales[1]
# Make frame
make_frame(x_range = range(scales), y_range = range(x, na.rm = TRUE), xlab = name_time,
ylab = name_ts, main = main)
# Add lines
lines(scales + scales[1], new_ts, type = "l", col = couleur, pch = 16)
}else {
if(!is.numeric(Time)){
# Make frame
make_frame(x_range = range(Time), y_range = range(x, na.rm = TRUE), add_axis_x = FALSE, xlab = name_time,
ylab = name_ts, main = main)
# Add x axis
axis.Date(1, Time)
}else {
# Make frame
make_frame(x_range = range(Time), y_range = range(x, na.rm = TRUE), xlab = name_time,
ylab = name_ts, main = main)
}
# Add lines
lines(scales, new_ts, type = "l", col = couleur, pch = 16)
}
}
# ----- Handle evenly spaced data
if (evenly == TRUE){
# X Scales
scales = seq(start, end, length = n_x)
if (is.null(end)){
scales = scales/freq
end = scales[n_x]
}
if (is.null(Time)){
# Make frame
make_frame(x_range = range(scales), y_range = range(x, na.rm = TRUE), xlab = name_time,
ylab = name_ts, main = main)
# Add lines
lines(scales, x, type = "l", col = couleur, pch = 16)
}
else {
if(!is.numeric(Time)){
# Make frame
make_frame(x_range = range(Time), y_range = range(x, na.rm = TRUE), add_axis_x = FALSE, xlab = name_time,
ylab = name_ts, main = main)
# Add x axis
axis.Date(1, Time)
}
else {
# Make frame
make_frame(x_range = range(Time), y_range = range(x, na.rm = TRUE), xlab = name_time,
ylab = name_ts, main = main)
}
# Add lines
lines(Time, x, type = "l", col = couleur, pch = 16)
}
}
}
#' @title Time of a gts object
#' @description Extracting the time of a gts object
#' @export
#' @keywords internal
#' @return Time vector of a gts object.
#' @author Stéphane Guerrier
gts_time = function(x){
start = attr(x, 'start')
end = attr(x, 'end')
freq = attr(x, 'freq')
Time = attr(x, 'Time')
n_x = length(x)
if (n_x == 0){stop('Time series is empty!')}
if(!is(x,"gts")){stop('object must be a gts object. Use functions gts() or gen_gts() to create it.')}
# X Scales
scales = seq(start, end, length = n_x)
if (is.null(end)){
scales = scales/freq
end = scales[n_x]
}
if (is.null(Time)){
return(scales)
}else{
return(Time)
}
}
#' @title Combine math expressions
#' @description Combine math expressions
#' @keywords internal
#' @param ... Expressions to combine.
#' @return A combined expression.
#' @author Stephane Guerrier
#' @export
comb = function(...) {
Reduce(function(x, y) substitute(x * y, env = list(x = x, y = y)),
list(...))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.