sivipboot: Confidence Intervals for the Total Sensitivity Indices by...

Description Usage Arguments Value See Also Examples

Description

Confidence intervals for the total sensitivity indices by a bootstrap method.

Usage

1
2
sivipboot(Y, XIndic, B, nc=2, graph=FALSE, alea=FALSE,
                  fast=FALSE, alpha=0.05)

Arguments

Y

Outputs. A data.frame with as many rows as observations and as many columns as response variables.

XIndic

Object of class polyX which contains the polynomial description and the dataset of inputs.

B

Number of bootstrap replicates.

nc

Number of components.

graph

If TRUE, boxplot display.

alea

If TRUE, an uniform random variable is included in the analysis (see sivipm).

fast

If TRUE, auxiliary results are calculated from the Miller's formulae more adapted to big datasets.

alpha

Level of the bootstrap confidence intervals.

Value

A matrix with as many rows as input variables and two columns: the lower and upper bounds of the total sensitivity indices percentile bootstrap confidence intervals.

See Also

sivipm

Examples

1
2
3
4
5
6
7
8
X <- cornell0[,1:3] # X-inputs
Y <- as.data.frame( cornell0[,8]) # response variable
# Creation of the polynomial:
P <- vect2polyX(X, c("1", "2", "3", "3*3*3"))
set.seed(15) #alea seed
nloops <- 3 # number of loops, example for fast running
nc <- 2 # number of components
sivipboot(Y, P, nloops, nc, fast=TRUE)


Search within the sivipm package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.