Nothing
skip_if(!is_slendr_env_present())
init_env(quiet = TRUE)
ooa <- population("OOA", time = 30000, N = 50, remove = 25000)
ehg <- population("EHG", parent = ooa, time = 28000, N = 100, remove = 6000)
eur <- population("EUR", parent = ehg, time = 25000, N = 200) %>%
resize(N = 10000, how = "exponential", time = 5000, end = 0)
ana <- population("ANA", time = 28000, N = 300, parent = ooa, remove = 40)
gf <- gene_flow(from = ana, to = eur, rate = 0.5, start = 8000, end = 6000)
test_that("non-serialized models are correctly simulated with msprime (but not SLiM)", {
model <- compile_model(
populations = list(ooa, ehg, eur, ana),
gene_flow = gf, generation_time = 30,
serialize = FALSE
)
expect_true(is.null(model$path))
expect_true(is.null(model$checksums))
expect_error(slim(model, sequence_length = 1, recombination_rate = 0),
"not possible to simulate non-serialized models")
ts <- msprime(model, sequence_length = 100, recombination_rate = 0)
expect_s3_class(ts, "slendr_ts")
expect_s3_class(ts, "tskit.trees.TreeSequence")
})
test_that("non-serialized models give the same result as serialized models (no sampling)", {
# create a serialized model
model_ser <- compile_model(
populations = list(ooa, ehg, eur, ana),
gene_flow = gf, generation_time = 30
)
expect_true(file.exists(model_ser$path))
expect_true(is.data.frame(model_ser$checksums))
# compile a non-serialized model
model_nonser <- compile_model(
populations = list(ooa, ehg, eur, ana),
gene_flow = gf, generation_time = 30,
serialize = FALSE
)
expect_true(is.null(model_nonser$path))
expect_true(is.null(model_nonser$checksums))
expect_error(slim(model_nonser, sequence_length = 1, recombination_rate = 0),
"not possible to simulate non-serialized models")
expect_s3_class(slim(model_ser, sequence_length = 1, recombination_rate = 0), "slendr_ts")
ts_nonser <- msprime(model_nonser, sequence_length = 10000, recombination_rate = 0, random_seed = 42) %>%
ts_mutate(mutation_rate = 0.0001, random_seed = 42)
expect_s3_class(ts_nonser, "slendr_ts")
expect_s3_class(ts_nonser, "tskit.trees.TreeSequence")
ts_ser <- msprime(model_ser, sequence_length = 10000, recombination_rate = 0, random_seed = 42) %>%
ts_mutate(mutation_rate = 0.0001, random_seed = 42)
expect_s3_class(ts_ser, "slendr_ts")
expect_s3_class(ts_ser, "tskit.trees.TreeSequence")
expect_true(all(ts_samples(ts_nonser) == ts_samples(ts_ser)))
# check equivalence of annotated tree-sequence tables
expect_true(all(ts_nodes(ts_ser) == ts_nodes(ts_nonser), na.rm = TRUE))
expect_true(all(ts_edges(ts_ser) == ts_edges(ts_nonser), na.rm = TRUE))
# check equivalence of raw tree-sequence tables
expect_true(all(ts_table(ts_ser, "individuals") == ts_table(ts_nonser, "individuals"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser, "edges") == ts_table(ts_nonser, "edges"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser, "nodes") == ts_table(ts_nonser, "nodes"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser, "mutations") == ts_table(ts_nonser, "mutations"), na.rm = TRUE))
# check equivalence of simplification for both tree sequences
ts_ser_small <- ts_simplify(ts_ser, simplify_to = c("EUR_1", "ANA_1", "EHG_1"))
ts_nonser_small <- ts_simplify(ts_nonser, simplify_to = c("EUR_1", "ANA_1", "EHG_1"))
expect_true(all(ts_samples(ts_nonser_small) == ts_samples(ts_ser_small)))
expect_true(all(ts_nodes(ts_ser_small) == ts_nodes(ts_nonser_small), na.rm = TRUE))
expect_true(all(ts_edges(ts_ser_small) == ts_edges(ts_nonser_small), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "individuals") == ts_table(ts_nonser_small, "individuals"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "edges") == ts_table(ts_nonser_small, "edges"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "nodes") == ts_table(ts_nonser_small, "nodes"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "mutations") == ts_table(ts_nonser_small, "mutations"), na.rm = TRUE))
# check equivalence of trees of both tree sequences
tree_ser <- ts_phylo(ts_ser_small, 0, quiet = TRUE)
tree_nonser <- ts_phylo(ts_nonser_small, 0, quiet = TRUE)
expect_true(all(sapply(names(tree_ser), function(x) all(tree_ser[[x]] == tree_nonser[[x]]))))
})
test_that("non-serialized models give the same result as serialized models (with sampling)", {
# create a serialized model
model_ser <- compile_model(
populations = list(ooa, ehg, eur, ana),
gene_flow = gf, generation_time = 30
)
# compile a non-serialized model
model_nonser <- compile_model(
populations = list(ooa, ehg, eur, ana),
gene_flow = gf, generation_time = 30,
serialize = FALSE
)
samples_ser <- rbind(
schedule_sampling(model_ser, times = 10000, list(ooa, 5), list(ehg, 5)),
schedule_sampling(model_ser, times = 1000, list(ana, 5), list(eur, 5))
)
samples_nonser <- rbind(
schedule_sampling(model_nonser, times = 10000, list(ooa, 5), list(ehg, 5)),
schedule_sampling(model_nonser, times = 1000, list(ana, 5), list(eur, 5))
)
ts_nonser <- msprime(model_nonser, sequence_length = 10000, recombination_rate = 0, random_seed = 42, samples = samples_nonser) %>%
ts_mutate(mutation_rate = 0.0001, random_seed = 42)
expect_s3_class(ts_nonser, "slendr_ts")
expect_s3_class(ts_nonser, "tskit.trees.TreeSequence")
ts_ser <- msprime(model_ser, sequence_length = 10000, recombination_rate = 0, random_seed = 42, samples = samples_ser) %>%
ts_mutate(mutation_rate = 0.0001, random_seed = 42)
expect_s3_class(ts_ser, "slendr_ts")
expect_s3_class(ts_ser, "tskit.trees.TreeSequence")
# check equivalence of annotated tree-sequence tables
expect_true(all(ts_nodes(ts_ser) == ts_nodes(ts_nonser), na.rm = TRUE))
expect_true(all(ts_edges(ts_ser) == ts_edges(ts_nonser), na.rm = TRUE))
# check equivalence of raw tree-sequence tables
expect_true(all(ts_table(ts_ser, "individuals") == ts_table(ts_nonser, "individuals"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser, "edges") == ts_table(ts_nonser, "edges"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser, "nodes") == ts_table(ts_nonser, "nodes"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser, "mutations") == ts_table(ts_nonser, "mutations"), na.rm = TRUE))
expect_true(all(ts_samples(ts_nonser) == ts_samples(ts_ser)))
# check equivalence of simplification for both tree sequences
ts_ser_small <- ts_simplify(ts_ser, simplify_to = c("EUR_1", "ANA_1", "EHG_1"))
ts_nonser_small <- ts_simplify(ts_nonser, simplify_to = c("EUR_1", "ANA_1", "EHG_1"))
expect_true(all(ts_samples(ts_nonser_small) == ts_samples(ts_ser_small)))
expect_true(all(ts_nodes(ts_ser_small) == ts_nodes(ts_nonser_small), na.rm = TRUE))
expect_true(all(ts_edges(ts_ser_small) == ts_edges(ts_nonser_small), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "individuals") == ts_table(ts_nonser_small, "individuals"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "edges") == ts_table(ts_nonser_small, "edges"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "nodes") == ts_table(ts_nonser_small, "nodes"), na.rm = TRUE))
expect_true(all(ts_table(ts_ser_small, "mutations") == ts_table(ts_nonser_small, "mutations"), na.rm = TRUE))
# check equivalence of trees of both tree sequences
tree_ser <- ts_phylo(ts_ser_small, 0, quiet = TRUE)
tree_nonser <- ts_phylo(ts_nonser_small, 0, quiet = TRUE)
expect_true(all(sapply(names(tree_ser), function(x) all(tree_ser[[x]] == tree_nonser[[x]]))))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.