Nothing
# spatial models ----------------------------------------------------------
test_that("read_model() restores a single-map model object", {
map <- readRDS("map.rds")
pop <- population("pop", N = 10, time = 100,
center = c(10, 40), radius = 100000, map = map)
model_dir <- file.path(tempdir(), "tmp-single-map-model-serialization")
model1 <- compile_model(pop, path = model_dir, resolution = 10000, generation_time = 1, overwrite = TRUE, force = TRUE,
competition = 100e3, mating = 100e3, dispersal = 10e3, direction = "backward")
model2 <- read_model(model1$path)
# make sure that all components of the model list object before and after
# serialization are equal
components <- c("checksums", "splits", "resizes", "geneflow", "maps", "direction", "length", "generation_time", "resolution", "world")
expect_true(all(sapply(components, function(i) all.equal(model1[[i]], model2[[i]]))))
expect_true(all(sapply(seq_along(model1$populations), function(i) all(model1$populations[[i]] == model2$populations[[i]]))))
expect_equal(names(model1$populations), names(model1$populations))
})
test_that("read_model() restores a complex model object", {
map <- readRDS("map.rds")
p1 <- population(name = "pop1", N = 700, time = 40000, radius = 600000, center = c(10, 25), map = map)
p2 <- population(name = "pop2", parent = p1, time = 30000, N = 500, center = c(10, 25), radius = 300000) %>%
move(trajectory = list(c(25, 25), c(40, 30), c(40, 40), c(50, 50)), start = 29000, end = 25000, snapshots = 30)
p3 <- population(name = "pop3", parent = p2, time = 20000, N = 2000, polygon = list(c(-10, 50), c(10, 50), c(20, 53), c(40, 60), c(40, 70), c(-10, 65)))
p4 <- population(name = "pop4", parent = p2, time = 15000, N = 2000, polygon = list(c(-10, 35), c(20, 37), c(25, 40), c(30, 45), c(10, 50), c(-10, 45)))
p5 <- population(name = "pop5", parent = p1, time = 10000, N = 300, center = c(10, 25), radius = 300000) %>%
move(trajectory = list(c(-5, 33), c(-5, 40)), start = 9000, end = 8000, snapshots = 20) %>%
expand_range(by = 2000000, start = 7000, end = 2000, snapshots = 10)
geneflow <- list(
gene_flow(from = p5, to = p4, rate = 0.2, start = 2000, end = 0),
gene_flow(from = p5, to = p3, rate = 0.3, start = 2000, end = 0)
)
model_dir <- file.path(tempdir(), "tmp-complex-map-model-serialization")
model1 <- compile_model(
path = model_dir,
populations = list(p1, p2, p3, p4, p5),
gene_flow = geneflow,
generation_time = 30,
resolution = 10000,
overwrite = TRUE, force = TRUE,
competition = 100e3, mating = 100e3, dispersal = 10e3
)
model2 <- read_model(model1$path)
components <- c("checksums", "splits", "resizes", "geneflow", "maps", "length", "orig_length", "direction", "generation_time", "resolution", "world")
expect_true(all(sapply(components, function(i) all.equal(model1[[i]], model2[[i]]))))
expect_true(all(sapply(seq_along(model1$populations), function(i) all(model1$populations[[i]] == model2$populations[[i]]))))
expect_equal(names(model1$populations), names(model1$populations))
})
test_that("non-unique population names lead to error", {
map <- readRDS("map.rds")
p1 <- population(name = "pop1", N = 700, time = 1, radius = 600000, center = c(10, 25), map = map)
p2 <- population(name = "pop2", N = 700, time = 1, radius = 600000, center = c(10, 25), map = map)
p3 <- population(name = "pop2", N = 700, time = 1, radius = 600000, center = c(10, 25), map = map)
model_dir <- file.path(tempdir(), "tmp-name-uniqueness")
expect_error(
compile_model(path = model_dir, populations = list(p1, p2, p3), generation_time = 30, resolution = 10000, overwrite = TRUE, force = TRUE, simulation_length = 10, competition = 100e3, mating = 100e3, dispersal = 10e3),
"All populations must have unique names"
)
p1 <- population(name = "pop1", N = 700, time = 1, radius = 600000, center = c(10, 25), map = map)
p2 <- population(name = "pop2", N = 700, time = 1, radius = 600000, center = c(10, 25), map = map)
p3 <- population(name = "pop3", N = 700, time = 1, radius = 600000, center = c(10, 25), map = map)
model_dir <- file.path(tempdir(), "tmp-name-uniqueness")
expect_silent(compile_model(path = model_dir, populations = list(p1, p2, p3), generation_time = 30, resolution = 10000, overwrite = TRUE, force = TRUE, simulation_length = 10, competition = 100e3, mating = 100e3, dispersal = 10e3))
})
# non-spatial models ------------------------------------------------------
test_that("read_model() restores a single-map model object (nonspatial)", {
pop <- population("pop", N = 10, time = 100)
model_dir <- file.path(tempdir(), "tmp-single-map-model-serialization")
model1 <- compile_model(pop, path = model_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "backward")
model2 <- read_model(model1$path)
# make sure that all components of the model list object before and after
# serialization are equal
components <- c("checksums", "splits", "resizes", "geneflow", "maps", "direction", "length", "generation_time", "resolution", "world")
expect_true(all(sapply(components, function(i) all.equal(model1[[i]], model2[[i]]))))
expect_true(all(sapply(seq_along(model1$populations), function(i) all(unlist(model1$populations[[i]]) == unlist(model2$populations[[i]])))))
})
test_that("read_model() restores a complex model object (nonspatial)", {
p1 <- population(name = "pop1", N = 700, time = 40000)
p2 <- population(name = "pop2", parent = p1, time = 30000, N = 500)
p3 <- population(name = "pop3", parent = p2, time = 20000, N = 2000)
p4 <- population(name = "pop4", parent = p2, time = 15000, N = 2000)
p5 <- population(name = "pop5", parent = p1, time = 10000, N = 300)
geneflow <- list(
gene_flow(from = p5, to = p4, rate = 0.2, start = 2000, end = 0),
gene_flow(from = p5, to = p3, rate = 0.3, start = 2000, end = 0)
)
model_dir <- file.path(tempdir(), "tmp-complex-map-model-serialization-nonspatial")
model1 <- compile_model(
path = model_dir,
populations = list(p1, p2, p3, p4, p5),
gene_flow = geneflow,
generation_time = 30,
overwrite = TRUE, force = TRUE
)
model2 <- read_model(model1$path)
components <- c("checksums", "splits", "resizes", "geneflow", "maps", "length", "orig_length", "direction", "generation_time", "resolution", "world")
expect_true(all(sapply(components, function(i) all.equal(model1[[i]], model2[[i]]))))
expect_true(all(sapply(seq_along(model1$populations), function(i) all(unlist(model1$populations[[i]]) == unlist(model2$populations[[i]])))))
expect_equal(names(model1$populations), names(model1$populations))
})
test_that("non-unique population names lead to error (nonspatial)", {
p1 <- population(name = "pop1", N = 700, time = 1)
p2 <- population(name = "pop2", N = 700, time = 1)
p3 <- population(name = "pop2", N = 700, time = 1)
model_dir <- file.path(tempdir(), "tmp-name-uniqueness-nonspatial")
expect_error(
compile_model(path = model_dir, populations = list(p1, p2, p3), generation_time = 30, resolution = 10000, overwrite = TRUE, force = TRUE, simulation_length = 10),
"All populations must have unique names"
)
p1 <- population(name = "pop1", N = 700, time = 1)
p2 <- population(name = "pop2", N = 700, time = 1)
p3 <- population(name = "pop3", N = 700, time = 1)
model_dir <- file.path(tempdir(), "tmp-name-uniqueness-nonspatial")
expect_silent(compile_model(path = model_dir, populations = list(p1, p2, p3), generation_time = 30, resolution = 10000, overwrite = TRUE, force = TRUE, simulation_length = 10))
})
test_that("checksums are enforced", {
pop <- population("pop", N = 10, time = 100)
model_dir <- file.path(tempdir(), "tmp-checksums")
model1 <- compile_model(pop, path = model_dir, generation_time = 1, overwrite = TRUE, force = TRUE, direction = "backward")
model2 <- read_model(model_dir)
expect_warning(verify_checksums(file.path(model_dir, model1$checksums$file[1]),
paste0(model1$checksums$hash[1], "asdf")), "Checksum of .* does not match")
expect_equal(model1$checksums$hash, model2$checksums$hash)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.