Nothing
skip_if(!is_slendr_env_present())
map <- world(xrange = c(1, 100), yrange = c(1, 100), landscape = "blank")
pop <- population("POP", time = 1, N = 100, center = c(50, 50), radius = 50, map = map)
model <- compile_model(
populations = pop,
generation_time = 1,
simulation_length = 100,
resolution = 1,
competition = 10, mating = 2, dispersal = 1,
overwrite = TRUE, force = TRUE
)
samples <- schedule_sampling(model, times = 100, list(pop, 10))
slim_ts <- tempfile(fileext = ".slim.trees")
msprime_ts <- tempfile(fileext = ".msprime.trees")
slim(
model, samples = samples, output = slim_ts,
sequence_length = 100000, recombination_rate = 1e-8,
method = "batch",
random_seed = 42
)
msprime(
model, samples = samples, output = msprime_ts,
sequence_length = 100000, recombination_rate = 1e-8,
random_seed = 42
)
test_that("ape phylo conversion only works on simplified, coalesced trees (SLiM)", {
ts1 <- ts_load(model = model, file = slim_ts)
suppressWarnings(ts2 <- ts_load(model = model, file = slim_ts))
ts3 <- ts_load(model = model, file = slim_ts) %>% ts_recapitate(Ne = 100, recombination_rate = 1e-8)
expect_error(
ts_phylo(ts1, 0, mode = "index", quiet = TRUE),
"A tree sequence tree which is not fully coalesced"
)
expect_error(
ts_phylo(ts2, 0, mode = "index", quiet = TRUE),
"A tree sequence tree which is not fully coalesced"
)
expect_error(
ts_phylo(ts3, 0, mode = "index", quiet = TRUE),
"Please simplify your tree sequence first"
)
})
test_that("ape phylo conversion only works on simplified, coalesced trees (msprime)", {
ts1 <- ts_load(model = model, file = msprime_ts)
suppressWarnings(ts2 <- ts_load(model = model, file = msprime_ts) %>% ts_simplify())
suppressWarnings(ts3 <- ts_load(model = model, file = msprime_ts) %>% ts_recapitate(Ne = 100, recombination_rate = 1e-8))
expect_s3_class(ts_phylo(ts1, 0, mode = "index", quiet = TRUE), "slendr_phylo")
expect_s3_class(ts_phylo(ts2, 0, mode = "index", quiet = TRUE), "slendr_phylo")
expect_s3_class(ts_phylo(ts3, 0, mode = "index", quiet = TRUE), "slendr_phylo")
})
ts1 <- ts_load(model = model, file = slim_ts) %>%
ts_recapitate(Ne = 1000, recombination_rate = 1e-8) %>%
ts_simplify() %>%
ts_mutate(mutation_rate = 0.0000001)
ts2 <- ts_load(model = model, file = msprime_ts) %>%
ts_mutate(mutation_rate = 0.0000001)
test_that("ape phylo and tskit.Tree objects are created by ts_tree/ts_phylo (SLiM)", {
t1 <- ts_tree(ts1, 0, mode = "index")
# we deal with the "not all nodes are spatial" warninng below
suppressWarnings(t2 <- ts_phylo(ts1, 0, mode = "index", quiet = TRUE))
expect_s3_class(t1, "tskit.trees.Tree")
expect_s3_class(t2, "phylo")
})
test_that("ape phylo and tskit.Tree objects are created by ts_tree/ts_phylo (msprime)", {
t1 <- ts_tree(ts2, 0, mode = "index")
# we deal with the "not all nodes are spatial" warning below
suppressWarnings(t2 <- ts_phylo(ts2, 0, mode = "index", quiet = TRUE))
expect_s3_class(t1, "tskit.trees.Tree")
expect_s3_class(t2, "phylo")
})
test_that("ape phylo and tskit.Tree objects are equivalent (SLiM)", {
t1 <- ts_tree(ts1, 0, mode = "index")
suppressWarnings(t2 <- ts_phylo(ts1, 0, mode = "index", quiet = TRUE))
expect_true(t1$num_edges == nrow(t2$edge))
expect_true(t1$num_samples() == length(t2$tip.label))
t1_internal <- t1$parent_array %>% .[. != -1] %>% unique()
t1_leaves <- reticulate::iterate(t1$leaves(t1$root))
t1_nodes <- c(t1_internal, t1_leaves)
t2_nodes <- unique(as.vector(t2$edge))
expect_true(length(t1_nodes) == length(t2_nodes))
# even the recapitated nodes should have numerical time_tskit values
# (after the fix of the join operation which caused NA to be introduced)
expect_true(all(!is.na(ts_nodes(t2)$time_tskit)))
})
test_that("ape phylo and tskit.Tree objects are equivalent (msprime)", {
t1 <- ts_tree(ts2, 0, mode = "index")
suppressWarnings(t2 <- ts_phylo(ts2, 0, mode = "index", quiet = TRUE))
expect_true(t1$num_edges == nrow(t2$edge))
expect_true(t1$num_samples() == length(t2$tip.label))
t1_internal <- t1$parent_array %>% .[. != -1] %>% unique()
t1_leaves <- reticulate::iterate(t1$leaves(t1$root))
t1_nodes <- c(t1_internal, t1_leaves)
t2_nodes <- unique(as.vector(t2$edge))
expect_true(length(t1_nodes) == length(t2_nodes))
})
test_that("ts_nodes only works on slendr_ts and phylo objects (SLiM)", {
i <- 1
t1 <- ts_tree(ts1, i - 1, mode = "index")
suppressWarnings(t2 <- ts_phylo(ts1, i - 1, mode = "index", quiet = TRUE))
t1_internal <- t1$parent_array %>% .[. != -1] %>% unique()
t1_leaves <- reticulate::iterate(t1$leaves(t1$root))
t1_nodes <- c(t1_internal, t1_leaves)
t2_nodes <- unique(as.vector(t2$edge))
data <- ts_nodes(t2)
expect_true(nrow(data) == t2$Nnode + length(t2$tip.label))
expect_true(nrow(data) == length(intersect(t2_nodes, data$phylo_id)))
})
test_that("ts_nodes only works on slendr_ts and phylo objects (msprime)", {
i <- 1
t1 <- ts_tree(ts2, i - 1, mode = "index")
suppressWarnings(t2 <- ts_phylo(ts2, i - 1, mode = "index", quiet = TRUE))
t1_internal <- t1$parent_array %>% .[. != -1] %>% unique()
t1_leaves <- reticulate::iterate(t1$leaves(t1$root))
t1_nodes <- c(t1_internal, t1_leaves)
t2_nodes <- unique(as.vector(t2$edge))
data <- ts_nodes(t2)
expect_true(nrow(data) == t2$Nnode + length(t2$tip.label))
expect_true(nrow(data) == length(intersect(t2_nodes, data$phylo_id)))
})
test_that("ts_nodes output contains the correct information for a given phylo tree (SLiM)", {
for (i in seq_len(ts1$num_trees)) {
t1 <- ts_tree(ts1, i - 1, mode = "index")
suppressWarnings(t2 <- ts_phylo(ts1, i - 1, mode = "index", quiet = TRUE))
t1_internal <- t1$parent_array %>% .[. != -1] %>% unique()
t1_leaves <- reticulate::iterate(t1$leaves(t1$root))
t1_nodes <- c(t1_internal, t1_leaves)
t2_nodes <- unique(as.vector(t2$edge))
data <- ts_nodes(t2)
expect_true(nrow(data) == t2$Nnode + length(t2$tip.label))
expect_true(nrow(data) == length(intersect(t2_nodes, data$phylo_id)))
}
})
test_that("ts_nodes output contains the correct information for a given phylo tree (msprime)", {
for (i in seq_len(ts2$num_trees)) {
t1 <- ts_tree(ts2, i - 1, mode = "index")
suppressWarnings(t2 <- ts_phylo(ts2, i - 1, mode = "index", quiet = TRUE))
t1_internal <- t1$parent_array %>% .[. != -1] %>% unique()
t1_leaves <- reticulate::iterate(t1$leaves(t1$root))
t1_nodes <- c(t1_internal, t1_leaves)
t2_nodes <- unique(as.vector(t2$edge))
data <- ts_nodes(t2)
expect_true(nrow(data) == t2$Nnode + length(t2$tip.label))
expect_true(nrow(data) == length(intersect(t2_nodes, data$phylo_id)))
}
})
test_that("ts_phylo refuses a non-coalesced tree sequence", {
ts <- ts_load(model = model, file = slim_ts)
expect_error(ts_phylo(ts, 0), "A tree sequence tree which is not fully coalesced")
})
test_that("ts_phylo errors on a not-yet-simplified tree sequence", {
ts <- ts_load(model = model, file = slim_ts) %>% ts_recapitate(Ne = 10, recombination_rate = 0)
expect_error(ts_phylo(ts, 0, quiet = TRUE), "Please simplify your tree sequence")
ts <- ts_load(model = model, file = slim_ts) %>% ts_recapitate(Ne = 10, recombination_rate = 0) %>% ts_simplify()
expect_s3_class(suppressWarnings(ts_phylo(ts, 0, quiet = TRUE)), "slendr_phylo")
})
test_that("ts_phylo gives a warning when a tree sequence is not fully spatial", {
ts <- ts_load(model = model, file = slim_ts) %>% ts_recapitate(Ne = 10, recombination_rate = 0) %>% ts_simplify()
expect_warning(ts_phylo(ts, 0, quiet = TRUE),
"Not all nodes have a known spatial location.")
pop2 <- population("POP", time = 1, N = 10, center = c(50, 50), radius = 50, map = map)
model2 <- compile_model(populations = pop2, generation_time = 1, simulation_length = 1000,
resolution = 1, competition = 10, mating = 50, dispersal = 1)
ts <- slim(model2, sequence_length = 1, recombination_rate = 0, method = "batch", random_seed = 42 ) %>% ts_simplify()
expect_s3_class(ts_nodes(ts_phylo(ts, 0, quiet = TRUE)), "sf")
expect_s3_class(attr(ts_phylo(ts, 0, quiet = TRUE), "edges"), "sf")
})
test_that("ts_nodes and ts_edges give the same result in single-tree tree sequences", {
ts <- slim(
model, samples = samples,
sequence_length = 100000, recombination_rate = 0,
method = "batch",
random_seed = 42
) %>%
ts_recapitate(Ne = 100, recombination_rate = 0) %>%
ts_simplify()
suppressWarnings(tree <- ts_phylo(ts, 0, quiet = TRUE))
nodes_tree <- ts_nodes(tree) %>% dplyr::arrange(time) %>% dplyr::select(-phylo_id)
nodes_ts <- ts_nodes(ts) %>% dplyr::arrange(time)
expect_true(all(nodes_ts == nodes_tree, na.rm = TRUE))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.