R/RcppExports.R

Defines functions RcppSpatialBlockBootstrap RcppDeLongPlacements RcppSVD RcppLinearTrendRM RcppDistSortedIndice RcppDistKNNIndice RcppKNNIndice RcppNeighborsNum RcppMatDistance RcppKNearestDistance RcppDistance RcppCMCTest RcppDeLongAUCConfidence RcppCorConfidence RcppCorSignificance RcppPartialCorTrivar RcppPartialCor RcppKendallCor RcppSpearmanCor RcppPearsonCor RcppArithmeticSeq RcppSumNormalize RcppAbsDiff RcppCumSum RcppRMSE RcppMAE RcppCovariance RcppVariance RcppSum RcppMax RcppMin RcppMean RcppMedian RcppLog RcppDigamma RcppGenSubsets RcppCombn RcppCombine RcppFactorial RcppSGC4Lattice RcppSGCSingle4Lattice RcppGCMC4Lattice RcppSCPCM4Lattice RcppGCCM4Lattice RcppIC4Lattice RcppMultiView4Lattice RcppSMap4Lattice RcppSimplex4Lattice RcppFNN4Lattice RcppSLMTri4Lattice RcppSLMBi4Lattice RcppSLMUni4Lattice RcppDivideLattice RcppGenLatticeSymbolization RcppGenLatticeNeighbors RcppGenLatticeEmbeddings RcppLaggedVal4Lattice RcppLaggedNeighbor4Lattice MatNotNAIndice OptICparm OptThetaParm OptEmbedDim DetectMaxNumThreads RcppSGC4Grid RcppSGCSingle4Grid RcppGCMC4Grid RcppSCPCM4Grid RcppGCCM4Grid RcppIC4Grid RcppMultiView4Grid RcppSMap4Grid RcppSimplex4Grid RcppFNN4Grid RcppSLMTri4Grid RcppSLMBi4Grid RcppSLMUni4Grid RcppDivideGrid RcppGenGridSymbolization RcppGenGridNeighbors RcppGenGridEmbeddings RcppLaggedVal4Grid RcppRowColFromGrid RcppLocateGridIndices RcppIntersectionCardinality RcppSMapForecast RcppSimplexForecast RcppConditionalEntropy_Disc RcppMutualInformation_Disc RcppJoinEntropy_Disc RcppEntropy_Disc RcppConditionalEntropy_Cont RcppMutualInformation_Cont RcppJoinEntropy_Cont RcppEntropy_Cont

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

RcppEntropy_Cont <- function(vec, k = 3L, base = 10, NA_rm = FALSE) {
    .Call(`_spEDM_RcppEntropy_Cont`, vec, k, base, NA_rm)
}

RcppJoinEntropy_Cont <- function(mat, columns, k = 3L, base = 10, NA_rm = FALSE) {
    .Call(`_spEDM_RcppJoinEntropy_Cont`, mat, columns, k, base, NA_rm)
}

RcppMutualInformation_Cont <- function(mat, columns1, columns2, k = 3L, alg = 1L, normalize = FALSE, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMutualInformation_Cont`, mat, columns1, columns2, k, alg, normalize, NA_rm)
}

RcppConditionalEntropy_Cont <- function(mat, target_columns, conditional_columns, k = 3L, base = 10, NA_rm = FALSE) {
    .Call(`_spEDM_RcppConditionalEntropy_Cont`, mat, target_columns, conditional_columns, k, base, NA_rm)
}

RcppEntropy_Disc <- function(vec, base = 10, NA_rm = FALSE) {
    .Call(`_spEDM_RcppEntropy_Disc`, vec, base, NA_rm)
}

RcppJoinEntropy_Disc <- function(mat, columns, base = 10, NA_rm = FALSE) {
    .Call(`_spEDM_RcppJoinEntropy_Disc`, mat, columns, base, NA_rm)
}

RcppMutualInformation_Disc <- function(mat, columns1, columns2, base = 10, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMutualInformation_Disc`, mat, columns1, columns2, base, NA_rm)
}

RcppConditionalEntropy_Disc <- function(mat, target_columns, conditional_columns, base = 10, NA_rm = FALSE) {
    .Call(`_spEDM_RcppConditionalEntropy_Disc`, mat, target_columns, conditional_columns, base, NA_rm)
}

RcppSimplexForecast <- function(embedding, target, lib, pred, num_neighbors = 4L) {
    .Call(`_spEDM_RcppSimplexForecast`, embedding, target, lib, pred, num_neighbors)
}

RcppSMapForecast <- function(embedding, target, lib, pred, num_neighbors = 4L, theta = 1.0) {
    .Call(`_spEDM_RcppSMapForecast`, embedding, target, lib, pred, num_neighbors, theta)
}

RcppIntersectionCardinality <- function(embedding_x, embedding_y, lib, pred, num_neighbors = 4L, n_excluded = 0L, threads = 8L, parallel_level = 0L) {
    .Call(`_spEDM_RcppIntersectionCardinality`, embedding_x, embedding_y, lib, pred, num_neighbors, n_excluded, threads, parallel_level)
}

RcppLocateGridIndices <- function(curRow, curCol, totalRow, totalCol) {
    .Call(`_spEDM_RcppLocateGridIndices`, curRow, curCol, totalRow, totalCol)
}

RcppRowColFromGrid <- function(cellNum, totalCol) {
    .Call(`_spEDM_RcppRowColFromGrid`, cellNum, totalCol)
}

RcppLaggedVal4Grid <- function(mat, lagNum) {
    .Call(`_spEDM_RcppLaggedVal4Grid`, mat, lagNum)
}

RcppGenGridEmbeddings <- function(mat, E, tau) {
    .Call(`_spEDM_RcppGenGridEmbeddings`, mat, E, tau)
}

RcppGenGridNeighbors <- function(mat, lib, k) {
    .Call(`_spEDM_RcppGenGridNeighbors`, mat, lib, k)
}

RcppGenGridSymbolization <- function(mat, lib, pred, k) {
    .Call(`_spEDM_RcppGenGridSymbolization`, mat, lib, pred, k)
}

RcppDivideGrid <- function(mat, b, shape = 3L) {
    .Call(`_spEDM_RcppDivideGrid`, mat, b, shape)
}

RcppSLMUni4Grid <- function(mat, k = 4L, step = 20L, alpha = 0.77, escape_threshold = 1e10) {
    .Call(`_spEDM_RcppSLMUni4Grid`, mat, k, step, alpha, escape_threshold)
}

RcppSLMBi4Grid <- function(mat1, mat2, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, beta_xy = 0.05, beta_yx = 0.4, escape_threshold = 1e10) {
    .Call(`_spEDM_RcppSLMBi4Grid`, mat1, mat2, k, step, alpha_x, alpha_y, beta_xy, beta_yx, escape_threshold)
}

RcppSLMTri4Grid <- function(mat1, mat2, mat3, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, alpha_z = 0.55, beta_xy = 0.05, beta_xz = 0.05, beta_yx = 0.4, beta_yz = 0.4, beta_zx = 0.65, beta_zy = 0.65, escape_threshold = 1e10) {
    .Call(`_spEDM_RcppSLMTri4Grid`, mat1, mat2, mat3, k, step, alpha_x, alpha_y, alpha_z, beta_xy, beta_xz, beta_yx, beta_yz, beta_zx, beta_zy, escape_threshold)
}

RcppFNN4Grid <- function(mat, rt, eps, lib, pred, E, tau, threads) {
    .Call(`_spEDM_RcppFNN4Grid`, mat, rt, eps, lib, pred, E, tau, threads)
}

RcppSimplex4Grid <- function(source, target, lib, pred, E, b, tau, threads) {
    .Call(`_spEDM_RcppSimplex4Grid`, source, target, lib, pred, E, b, tau, threads)
}

RcppSMap4Grid <- function(source, target, lib, pred, theta, E, tau, b, threads) {
    .Call(`_spEDM_RcppSMap4Grid`, source, target, lib, pred, theta, E, tau, b, threads)
}

RcppMultiView4Grid <- function(xMatrix, yMatrix, lib, pred, E, tau, b, top, nvar, threads) {
    .Call(`_spEDM_RcppMultiView4Grid`, xMatrix, yMatrix, lib, pred, E, tau, b, top, nvar, threads)
}

RcppIC4Grid <- function(source, target, lib, pred, E, b, tau, exclude = 0L, threads = 8L, parallel_level = 0L) {
    .Call(`_spEDM_RcppIC4Grid`, source, target, lib, pred, E, b, tau, exclude, threads, parallel_level)
}

RcppGCCM4Grid <- function(xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar) {
    .Call(`_spEDM_RcppGCCM4Grid`, xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar)
}

RcppSCPCM4Grid <- function(xMatrix, yMatrix, zMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar) {
    .Call(`_spEDM_RcppSCPCM4Grid`, xMatrix, yMatrix, zMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar)
}

RcppGCMC4Grid <- function(xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar) {
    .Call(`_spEDM_RcppGCMC4Grid`, xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar)
}

RcppSGCSingle4Grid <- function(x, y, lib, pred, k, base = 2, symbolize = TRUE, normalize = FALSE) {
    .Call(`_spEDM_RcppSGCSingle4Grid`, x, y, lib, pred, k, base, symbolize, normalize)
}

RcppSGC4Grid <- function(x, y, lib, pred, block, k, threads, boot = 399L, base = 2, seed = 42L, symbolize = TRUE, normalize = FALSE, progressbar = TRUE) {
    .Call(`_spEDM_RcppSGC4Grid`, x, y, lib, pred, block, k, threads, boot, base, seed, symbolize, normalize, progressbar)
}

DetectMaxNumThreads <- function() {
    .Call(`_spEDM_DetectMaxNumThreads`)
}

OptEmbedDim <- function(Emat) {
    .Call(`_spEDM_OptEmbedDim`, Emat)
}

OptThetaParm <- function(Thetamat) {
    .Call(`_spEDM_OptThetaParm`, Thetamat)
}

OptICparm <- function(Emat) {
    .Call(`_spEDM_OptICparm`, Emat)
}

MatNotNAIndice <- function(mat, byrow = TRUE) {
    .Call(`_spEDM_MatNotNAIndice`, mat, byrow)
}

RcppLaggedNeighbor4Lattice <- function(nb, lagNum) {
    .Call(`_spEDM_RcppLaggedNeighbor4Lattice`, nb, lagNum)
}

RcppLaggedVal4Lattice <- function(vec, nb, lagNum) {
    .Call(`_spEDM_RcppLaggedVal4Lattice`, vec, nb, lagNum)
}

RcppGenLatticeEmbeddings <- function(vec, nb, E, tau) {
    .Call(`_spEDM_RcppGenLatticeEmbeddings`, vec, nb, E, tau)
}

RcppGenLatticeNeighbors <- function(vec, nb, lib, k) {
    .Call(`_spEDM_RcppGenLatticeNeighbors`, vec, nb, lib, k)
}

RcppGenLatticeSymbolization <- function(vec, nb, lib, pred, k) {
    .Call(`_spEDM_RcppGenLatticeSymbolization`, vec, nb, lib, pred, k)
}

RcppDivideLattice <- function(nb, b) {
    .Call(`_spEDM_RcppDivideLattice`, nb, b)
}

RcppSLMUni4Lattice <- function(vec, nb, k = 4L, step = 20L, alpha = 0.77, escape_threshold = 1e10) {
    .Call(`_spEDM_RcppSLMUni4Lattice`, vec, nb, k, step, alpha, escape_threshold)
}

RcppSLMBi4Lattice <- function(x, y, nb, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, beta_xy = 0.05, beta_yx = 0.4, escape_threshold = 1e10) {
    .Call(`_spEDM_RcppSLMBi4Lattice`, x, y, nb, k, step, alpha_x, alpha_y, beta_xy, beta_yx, escape_threshold)
}

RcppSLMTri4Lattice <- function(x, y, z, nb, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, alpha_z = 0.55, beta_xy = 0.05, beta_xz = 0.05, beta_yx = 0.4, beta_yz = 0.4, beta_zx = 0.65, beta_zy = 0.65, escape_threshold = 1e10) {
    .Call(`_spEDM_RcppSLMTri4Lattice`, x, y, z, nb, k, step, alpha_x, alpha_y, alpha_z, beta_xy, beta_xz, beta_yx, beta_yz, beta_zx, beta_zy, escape_threshold)
}

RcppFNN4Lattice <- function(vec, nb, rt, eps, lib, pred, E, tau, threads) {
    .Call(`_spEDM_RcppFNN4Lattice`, vec, nb, rt, eps, lib, pred, E, tau, threads)
}

RcppSimplex4Lattice <- function(source, target, nb, lib, pred, E, b, tau, threads) {
    .Call(`_spEDM_RcppSimplex4Lattice`, source, target, nb, lib, pred, E, b, tau, threads)
}

RcppSMap4Lattice <- function(source, target, nb, lib, pred, theta, E, tau, b, threads) {
    .Call(`_spEDM_RcppSMap4Lattice`, source, target, nb, lib, pred, theta, E, tau, b, threads)
}

RcppMultiView4Lattice <- function(x, y, nb, lib, pred, E, tau, b, top, nvar, threads) {
    .Call(`_spEDM_RcppMultiView4Lattice`, x, y, nb, lib, pred, E, tau, b, top, nvar, threads)
}

RcppIC4Lattice <- function(source, target, nb, lib, pred, E, b, tau, exclude = 0L, threads = 8L, parallel_level = 0L) {
    .Call(`_spEDM_RcppIC4Lattice`, source, target, nb, lib, pred, E, b, tau, exclude, threads, parallel_level)
}

RcppGCCM4Lattice <- function(x, y, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar) {
    .Call(`_spEDM_RcppGCCM4Lattice`, x, y, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar)
}

RcppSCPCM4Lattice <- function(x, y, z, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar) {
    .Call(`_spEDM_RcppSCPCM4Lattice`, x, y, z, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar)
}

RcppGCMC4Lattice <- function(x, y, nb, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar) {
    .Call(`_spEDM_RcppGCMC4Lattice`, x, y, nb, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar)
}

RcppSGCSingle4Lattice <- function(x, y, nb, lib, pred, k, base = 2, symbolize = TRUE, normalize = FALSE) {
    .Call(`_spEDM_RcppSGCSingle4Lattice`, x, y, nb, lib, pred, k, base, symbolize, normalize)
}

RcppSGC4Lattice <- function(x, y, nb, lib, pred, block, k, threads, boot = 399L, base = 2, seed = 42L, symbolize = TRUE, normalize = FALSE, progressbar = TRUE) {
    .Call(`_spEDM_RcppSGC4Lattice`, x, y, nb, lib, pred, block, k, threads, boot, base, seed, symbolize, normalize, progressbar)
}

RcppFactorial <- function(n) {
    .Call(`_spEDM_RcppFactorial`, n)
}

RcppCombine <- function(n, k) {
    .Call(`_spEDM_RcppCombine`, n, k)
}

RcppCombn <- function(vec, m) {
    .Call(`_spEDM_RcppCombn`, vec, m)
}

RcppGenSubsets <- function(vec) {
    .Call(`_spEDM_RcppGenSubsets`, vec)
}

RcppDigamma <- function(x) {
    .Call(`_spEDM_RcppDigamma`, x)
}

RcppLog <- function(x, base = 10) {
    .Call(`_spEDM_RcppLog`, x, base)
}

RcppMedian <- function(vec, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMedian`, vec, NA_rm)
}

RcppMean <- function(vec, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMean`, vec, NA_rm)
}

RcppMin <- function(vec, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMin`, vec, NA_rm)
}

RcppMax <- function(vec, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMax`, vec, NA_rm)
}

RcppSum <- function(vec, NA_rm = FALSE) {
    .Call(`_spEDM_RcppSum`, vec, NA_rm)
}

RcppVariance <- function(vec, NA_rm = FALSE) {
    .Call(`_spEDM_RcppVariance`, vec, NA_rm)
}

RcppCovariance <- function(vec1, vec2, NA_rm = FALSE) {
    .Call(`_spEDM_RcppCovariance`, vec1, vec2, NA_rm)
}

RcppMAE <- function(vec1, vec2, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMAE`, vec1, vec2, NA_rm)
}

RcppRMSE <- function(vec1, vec2, NA_rm = FALSE) {
    .Call(`_spEDM_RcppRMSE`, vec1, vec2, NA_rm)
}

RcppCumSum <- function(vec) {
    .Call(`_spEDM_RcppCumSum`, vec)
}

RcppAbsDiff <- function(vec1, vec2) {
    .Call(`_spEDM_RcppAbsDiff`, vec1, vec2)
}

RcppSumNormalize <- function(vec, NA_rm = FALSE) {
    .Call(`_spEDM_RcppSumNormalize`, vec, NA_rm)
}

RcppArithmeticSeq <- function(from, to, length_out) {
    .Call(`_spEDM_RcppArithmeticSeq`, from, to, length_out)
}

RcppPearsonCor <- function(y, y_hat, NA_rm = FALSE) {
    .Call(`_spEDM_RcppPearsonCor`, y, y_hat, NA_rm)
}

RcppSpearmanCor <- function(y, y_hat, NA_rm = FALSE) {
    .Call(`_spEDM_RcppSpearmanCor`, y, y_hat, NA_rm)
}

RcppKendallCor <- function(y, y_hat, NA_rm = FALSE) {
    .Call(`_spEDM_RcppKendallCor`, y, y_hat, NA_rm)
}

RcppPartialCor <- function(y, y_hat, controls, NA_rm = FALSE, linear = FALSE) {
    .Call(`_spEDM_RcppPartialCor`, y, y_hat, controls, NA_rm, linear)
}

RcppPartialCorTrivar <- function(y, y_hat, control, NA_rm = FALSE, linear = FALSE) {
    .Call(`_spEDM_RcppPartialCorTrivar`, y, y_hat, control, NA_rm, linear)
}

RcppCorSignificance <- function(r, n, k = 0L) {
    .Call(`_spEDM_RcppCorSignificance`, r, n, k)
}

RcppCorConfidence <- function(r, n, k = 0L, level = 0.05) {
    .Call(`_spEDM_RcppCorConfidence`, r, n, k, level)
}

RcppDeLongAUCConfidence <- function(cases, controls, direction, level = 0.05) {
    .Call(`_spEDM_RcppDeLongAUCConfidence`, cases, controls, direction, level)
}

RcppCMCTest <- function(cases, direction, level = 0.05, num_samples = 0L) {
    .Call(`_spEDM_RcppCMCTest`, cases, direction, level, num_samples)
}

RcppDistance <- function(vec1, vec2, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_spEDM_RcppDistance`, vec1, vec2, L1norm, NA_rm)
}

RcppKNearestDistance <- function(vec1, k, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_spEDM_RcppKNearestDistance`, vec1, k, L1norm, NA_rm)
}

RcppMatDistance <- function(mat, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_spEDM_RcppMatDistance`, mat, L1norm, NA_rm)
}

RcppNeighborsNum <- function(vec, radius, equal = FALSE, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_spEDM_RcppNeighborsNum`, vec, radius, equal, L1norm, NA_rm)
}

RcppKNNIndice <- function(embedding_space, target_idx, k, lib) {
    .Call(`_spEDM_RcppKNNIndice`, embedding_space, target_idx, k, lib)
}

RcppDistKNNIndice <- function(dist_mat, target_idx, k, lib) {
    .Call(`_spEDM_RcppDistKNNIndice`, dist_mat, target_idx, k, lib)
}

RcppDistSortedIndice <- function(dist_mat, lib, include_self = FALSE) {
    .Call(`_spEDM_RcppDistSortedIndice`, dist_mat, lib, include_self)
}

RcppLinearTrendRM <- function(vec, xcoord, ycoord, NA_rm = FALSE) {
    .Call(`_spEDM_RcppLinearTrendRM`, vec, xcoord, ycoord, NA_rm)
}

RcppSVD <- function(X) {
    .Call(`_spEDM_RcppSVD`, X)
}

RcppDeLongPlacements <- function(cases, controls, direction) {
    .Call(`_spEDM_RcppDeLongPlacements`, cases, controls, direction)
}

RcppSpatialBlockBootstrap <- function(block, seed = 42L) {
    .Call(`_spEDM_RcppSpatialBlockBootstrap`, block, seed)
}

Try the spEDM package in your browser

Any scripts or data that you put into this service are public.

spEDM documentation built on June 25, 2025, 9:07 a.m.