Nothing
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
RcppEntropy_Cont <- function(vec, k = 3L, base = 10, NA_rm = FALSE) {
.Call(`_spEDM_RcppEntropy_Cont`, vec, k, base, NA_rm)
}
RcppJoinEntropy_Cont <- function(mat, columns, k = 3L, base = 10, NA_rm = FALSE) {
.Call(`_spEDM_RcppJoinEntropy_Cont`, mat, columns, k, base, NA_rm)
}
RcppMutualInformation_Cont <- function(mat, columns1, columns2, k = 3L, alg = 1L, normalize = FALSE, NA_rm = FALSE) {
.Call(`_spEDM_RcppMutualInformation_Cont`, mat, columns1, columns2, k, alg, normalize, NA_rm)
}
RcppConditionalEntropy_Cont <- function(mat, target_columns, conditional_columns, k = 3L, base = 10, NA_rm = FALSE) {
.Call(`_spEDM_RcppConditionalEntropy_Cont`, mat, target_columns, conditional_columns, k, base, NA_rm)
}
RcppEntropy_Disc <- function(vec, base = 10, NA_rm = FALSE) {
.Call(`_spEDM_RcppEntropy_Disc`, vec, base, NA_rm)
}
RcppJoinEntropy_Disc <- function(mat, columns, base = 10, NA_rm = FALSE) {
.Call(`_spEDM_RcppJoinEntropy_Disc`, mat, columns, base, NA_rm)
}
RcppMutualInformation_Disc <- function(mat, columns1, columns2, base = 10, NA_rm = FALSE) {
.Call(`_spEDM_RcppMutualInformation_Disc`, mat, columns1, columns2, base, NA_rm)
}
RcppConditionalEntropy_Disc <- function(mat, target_columns, conditional_columns, base = 10, NA_rm = FALSE) {
.Call(`_spEDM_RcppConditionalEntropy_Disc`, mat, target_columns, conditional_columns, base, NA_rm)
}
RcppSimplexForecast <- function(embedding, target, lib, pred, num_neighbors = 4L) {
.Call(`_spEDM_RcppSimplexForecast`, embedding, target, lib, pred, num_neighbors)
}
RcppSMapForecast <- function(embedding, target, lib, pred, num_neighbors = 4L, theta = 1.0) {
.Call(`_spEDM_RcppSMapForecast`, embedding, target, lib, pred, num_neighbors, theta)
}
RcppIntersectionCardinality <- function(embedding_x, embedding_y, lib, pred, num_neighbors = 4L, n_excluded = 0L, threads = 8L, parallel_level = 0L) {
.Call(`_spEDM_RcppIntersectionCardinality`, embedding_x, embedding_y, lib, pred, num_neighbors, n_excluded, threads, parallel_level)
}
RcppLocateGridIndices <- function(curRow, curCol, totalRow, totalCol) {
.Call(`_spEDM_RcppLocateGridIndices`, curRow, curCol, totalRow, totalCol)
}
RcppRowColFromGrid <- function(cellNum, totalCol) {
.Call(`_spEDM_RcppRowColFromGrid`, cellNum, totalCol)
}
RcppLaggedVal4Grid <- function(mat, lagNum) {
.Call(`_spEDM_RcppLaggedVal4Grid`, mat, lagNum)
}
RcppGenGridEmbeddings <- function(mat, E, tau) {
.Call(`_spEDM_RcppGenGridEmbeddings`, mat, E, tau)
}
RcppGenGridNeighbors <- function(mat, lib, k) {
.Call(`_spEDM_RcppGenGridNeighbors`, mat, lib, k)
}
RcppGenGridSymbolization <- function(mat, lib, pred, k) {
.Call(`_spEDM_RcppGenGridSymbolization`, mat, lib, pred, k)
}
RcppDivideGrid <- function(mat, b, shape = 3L) {
.Call(`_spEDM_RcppDivideGrid`, mat, b, shape)
}
RcppSLMUni4Grid <- function(mat, k = 4L, step = 20L, alpha = 0.77, escape_threshold = 1e10) {
.Call(`_spEDM_RcppSLMUni4Grid`, mat, k, step, alpha, escape_threshold)
}
RcppSLMBi4Grid <- function(mat1, mat2, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, beta_xy = 0.05, beta_yx = 0.4, escape_threshold = 1e10) {
.Call(`_spEDM_RcppSLMBi4Grid`, mat1, mat2, k, step, alpha_x, alpha_y, beta_xy, beta_yx, escape_threshold)
}
RcppSLMTri4Grid <- function(mat1, mat2, mat3, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, alpha_z = 0.55, beta_xy = 0.05, beta_xz = 0.05, beta_yx = 0.4, beta_yz = 0.4, beta_zx = 0.65, beta_zy = 0.65, escape_threshold = 1e10) {
.Call(`_spEDM_RcppSLMTri4Grid`, mat1, mat2, mat3, k, step, alpha_x, alpha_y, alpha_z, beta_xy, beta_xz, beta_yx, beta_yz, beta_zx, beta_zy, escape_threshold)
}
RcppFNN4Grid <- function(mat, rt, eps, lib, pred, E, tau, threads) {
.Call(`_spEDM_RcppFNN4Grid`, mat, rt, eps, lib, pred, E, tau, threads)
}
RcppSimplex4Grid <- function(source, target, lib, pred, E, b, tau, threads) {
.Call(`_spEDM_RcppSimplex4Grid`, source, target, lib, pred, E, b, tau, threads)
}
RcppSMap4Grid <- function(source, target, lib, pred, theta, E, tau, b, threads) {
.Call(`_spEDM_RcppSMap4Grid`, source, target, lib, pred, theta, E, tau, b, threads)
}
RcppMultiView4Grid <- function(xMatrix, yMatrix, lib, pred, E, tau, b, top, nvar, threads) {
.Call(`_spEDM_RcppMultiView4Grid`, xMatrix, yMatrix, lib, pred, E, tau, b, top, nvar, threads)
}
RcppIC4Grid <- function(source, target, lib, pred, E, b, tau, exclude = 0L, threads = 8L, parallel_level = 0L) {
.Call(`_spEDM_RcppIC4Grid`, source, target, lib, pred, E, b, tau, exclude, threads, parallel_level)
}
RcppGCCM4Grid <- function(xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar) {
.Call(`_spEDM_RcppGCCM4Grid`, xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar)
}
RcppSCPCM4Grid <- function(xMatrix, yMatrix, zMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar) {
.Call(`_spEDM_RcppSCPCM4Grid`, xMatrix, yMatrix, zMatrix, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar)
}
RcppGCMC4Grid <- function(xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar) {
.Call(`_spEDM_RcppGCMC4Grid`, xMatrix, yMatrix, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar)
}
RcppSGCSingle4Grid <- function(x, y, lib, pred, k, base = 2, symbolize = TRUE, normalize = FALSE) {
.Call(`_spEDM_RcppSGCSingle4Grid`, x, y, lib, pred, k, base, symbolize, normalize)
}
RcppSGC4Grid <- function(x, y, lib, pred, block, k, threads, boot = 399L, base = 2, seed = 42L, symbolize = TRUE, normalize = FALSE, progressbar = TRUE) {
.Call(`_spEDM_RcppSGC4Grid`, x, y, lib, pred, block, k, threads, boot, base, seed, symbolize, normalize, progressbar)
}
DetectMaxNumThreads <- function() {
.Call(`_spEDM_DetectMaxNumThreads`)
}
OptEmbedDim <- function(Emat) {
.Call(`_spEDM_OptEmbedDim`, Emat)
}
OptThetaParm <- function(Thetamat) {
.Call(`_spEDM_OptThetaParm`, Thetamat)
}
OptICparm <- function(Emat) {
.Call(`_spEDM_OptICparm`, Emat)
}
MatNotNAIndice <- function(mat, byrow = TRUE) {
.Call(`_spEDM_MatNotNAIndice`, mat, byrow)
}
RcppLaggedNeighbor4Lattice <- function(nb, lagNum) {
.Call(`_spEDM_RcppLaggedNeighbor4Lattice`, nb, lagNum)
}
RcppLaggedVal4Lattice <- function(vec, nb, lagNum) {
.Call(`_spEDM_RcppLaggedVal4Lattice`, vec, nb, lagNum)
}
RcppGenLatticeEmbeddings <- function(vec, nb, E, tau) {
.Call(`_spEDM_RcppGenLatticeEmbeddings`, vec, nb, E, tau)
}
RcppGenLatticeNeighbors <- function(vec, nb, lib, k) {
.Call(`_spEDM_RcppGenLatticeNeighbors`, vec, nb, lib, k)
}
RcppGenLatticeSymbolization <- function(vec, nb, lib, pred, k) {
.Call(`_spEDM_RcppGenLatticeSymbolization`, vec, nb, lib, pred, k)
}
RcppDivideLattice <- function(nb, b) {
.Call(`_spEDM_RcppDivideLattice`, nb, b)
}
RcppSLMUni4Lattice <- function(vec, nb, k = 4L, step = 20L, alpha = 0.77, escape_threshold = 1e10) {
.Call(`_spEDM_RcppSLMUni4Lattice`, vec, nb, k, step, alpha, escape_threshold)
}
RcppSLMBi4Lattice <- function(x, y, nb, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, beta_xy = 0.05, beta_yx = 0.4, escape_threshold = 1e10) {
.Call(`_spEDM_RcppSLMBi4Lattice`, x, y, nb, k, step, alpha_x, alpha_y, beta_xy, beta_yx, escape_threshold)
}
RcppSLMTri4Lattice <- function(x, y, z, nb, k = 4L, step = 20L, alpha_x = 0.625, alpha_y = 0.77, alpha_z = 0.55, beta_xy = 0.05, beta_xz = 0.05, beta_yx = 0.4, beta_yz = 0.4, beta_zx = 0.65, beta_zy = 0.65, escape_threshold = 1e10) {
.Call(`_spEDM_RcppSLMTri4Lattice`, x, y, z, nb, k, step, alpha_x, alpha_y, alpha_z, beta_xy, beta_xz, beta_yx, beta_yz, beta_zx, beta_zy, escape_threshold)
}
RcppFNN4Lattice <- function(vec, nb, rt, eps, lib, pred, E, tau, threads) {
.Call(`_spEDM_RcppFNN4Lattice`, vec, nb, rt, eps, lib, pred, E, tau, threads)
}
RcppSimplex4Lattice <- function(source, target, nb, lib, pred, E, b, tau, threads) {
.Call(`_spEDM_RcppSimplex4Lattice`, source, target, nb, lib, pred, E, b, tau, threads)
}
RcppSMap4Lattice <- function(source, target, nb, lib, pred, theta, E, tau, b, threads) {
.Call(`_spEDM_RcppSMap4Lattice`, source, target, nb, lib, pred, theta, E, tau, b, threads)
}
RcppMultiView4Lattice <- function(x, y, nb, lib, pred, E, tau, b, top, nvar, threads) {
.Call(`_spEDM_RcppMultiView4Lattice`, x, y, nb, lib, pred, E, tau, b, top, nvar, threads)
}
RcppIC4Lattice <- function(source, target, nb, lib, pred, E, b, tau, exclude = 0L, threads = 8L, parallel_level = 0L) {
.Call(`_spEDM_RcppIC4Lattice`, source, target, nb, lib, pred, E, b, tau, exclude, threads, parallel_level)
}
RcppGCCM4Lattice <- function(x, y, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar) {
.Call(`_spEDM_RcppGCCM4Lattice`, x, y, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, progressbar)
}
RcppSCPCM4Lattice <- function(x, y, z, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar) {
.Call(`_spEDM_RcppSCPCM4Lattice`, x, y, z, nb, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, progressbar)
}
RcppGCMC4Lattice <- function(x, y, nb, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar) {
.Call(`_spEDM_RcppGCMC4Lattice`, x, y, nb, libsizes, lib, pred, E, tau, b, r, threads, parallel_level, progressbar)
}
RcppSGCSingle4Lattice <- function(x, y, nb, lib, pred, k, base = 2, symbolize = TRUE, normalize = FALSE) {
.Call(`_spEDM_RcppSGCSingle4Lattice`, x, y, nb, lib, pred, k, base, symbolize, normalize)
}
RcppSGC4Lattice <- function(x, y, nb, lib, pred, block, k, threads, boot = 399L, base = 2, seed = 42L, symbolize = TRUE, normalize = FALSE, progressbar = TRUE) {
.Call(`_spEDM_RcppSGC4Lattice`, x, y, nb, lib, pred, block, k, threads, boot, base, seed, symbolize, normalize, progressbar)
}
RcppFactorial <- function(n) {
.Call(`_spEDM_RcppFactorial`, n)
}
RcppCombine <- function(n, k) {
.Call(`_spEDM_RcppCombine`, n, k)
}
RcppCombn <- function(vec, m) {
.Call(`_spEDM_RcppCombn`, vec, m)
}
RcppGenSubsets <- function(vec) {
.Call(`_spEDM_RcppGenSubsets`, vec)
}
RcppDigamma <- function(x) {
.Call(`_spEDM_RcppDigamma`, x)
}
RcppLog <- function(x, base = 10) {
.Call(`_spEDM_RcppLog`, x, base)
}
RcppMedian <- function(vec, NA_rm = FALSE) {
.Call(`_spEDM_RcppMedian`, vec, NA_rm)
}
RcppMean <- function(vec, NA_rm = FALSE) {
.Call(`_spEDM_RcppMean`, vec, NA_rm)
}
RcppMin <- function(vec, NA_rm = FALSE) {
.Call(`_spEDM_RcppMin`, vec, NA_rm)
}
RcppMax <- function(vec, NA_rm = FALSE) {
.Call(`_spEDM_RcppMax`, vec, NA_rm)
}
RcppSum <- function(vec, NA_rm = FALSE) {
.Call(`_spEDM_RcppSum`, vec, NA_rm)
}
RcppVariance <- function(vec, NA_rm = FALSE) {
.Call(`_spEDM_RcppVariance`, vec, NA_rm)
}
RcppCovariance <- function(vec1, vec2, NA_rm = FALSE) {
.Call(`_spEDM_RcppCovariance`, vec1, vec2, NA_rm)
}
RcppMAE <- function(vec1, vec2, NA_rm = FALSE) {
.Call(`_spEDM_RcppMAE`, vec1, vec2, NA_rm)
}
RcppRMSE <- function(vec1, vec2, NA_rm = FALSE) {
.Call(`_spEDM_RcppRMSE`, vec1, vec2, NA_rm)
}
RcppCumSum <- function(vec) {
.Call(`_spEDM_RcppCumSum`, vec)
}
RcppAbsDiff <- function(vec1, vec2) {
.Call(`_spEDM_RcppAbsDiff`, vec1, vec2)
}
RcppSumNormalize <- function(vec, NA_rm = FALSE) {
.Call(`_spEDM_RcppSumNormalize`, vec, NA_rm)
}
RcppArithmeticSeq <- function(from, to, length_out) {
.Call(`_spEDM_RcppArithmeticSeq`, from, to, length_out)
}
RcppPearsonCor <- function(y, y_hat, NA_rm = FALSE) {
.Call(`_spEDM_RcppPearsonCor`, y, y_hat, NA_rm)
}
RcppSpearmanCor <- function(y, y_hat, NA_rm = FALSE) {
.Call(`_spEDM_RcppSpearmanCor`, y, y_hat, NA_rm)
}
RcppKendallCor <- function(y, y_hat, NA_rm = FALSE) {
.Call(`_spEDM_RcppKendallCor`, y, y_hat, NA_rm)
}
RcppPartialCor <- function(y, y_hat, controls, NA_rm = FALSE, linear = FALSE) {
.Call(`_spEDM_RcppPartialCor`, y, y_hat, controls, NA_rm, linear)
}
RcppPartialCorTrivar <- function(y, y_hat, control, NA_rm = FALSE, linear = FALSE) {
.Call(`_spEDM_RcppPartialCorTrivar`, y, y_hat, control, NA_rm, linear)
}
RcppCorSignificance <- function(r, n, k = 0L) {
.Call(`_spEDM_RcppCorSignificance`, r, n, k)
}
RcppCorConfidence <- function(r, n, k = 0L, level = 0.05) {
.Call(`_spEDM_RcppCorConfidence`, r, n, k, level)
}
RcppDeLongAUCConfidence <- function(cases, controls, direction, level = 0.05) {
.Call(`_spEDM_RcppDeLongAUCConfidence`, cases, controls, direction, level)
}
RcppCMCTest <- function(cases, direction, level = 0.05, num_samples = 0L) {
.Call(`_spEDM_RcppCMCTest`, cases, direction, level, num_samples)
}
RcppDistance <- function(vec1, vec2, L1norm = FALSE, NA_rm = FALSE) {
.Call(`_spEDM_RcppDistance`, vec1, vec2, L1norm, NA_rm)
}
RcppKNearestDistance <- function(vec1, k, L1norm = FALSE, NA_rm = FALSE) {
.Call(`_spEDM_RcppKNearestDistance`, vec1, k, L1norm, NA_rm)
}
RcppMatDistance <- function(mat, L1norm = FALSE, NA_rm = FALSE) {
.Call(`_spEDM_RcppMatDistance`, mat, L1norm, NA_rm)
}
RcppNeighborsNum <- function(vec, radius, equal = FALSE, L1norm = FALSE, NA_rm = FALSE) {
.Call(`_spEDM_RcppNeighborsNum`, vec, radius, equal, L1norm, NA_rm)
}
RcppKNNIndice <- function(embedding_space, target_idx, k, lib) {
.Call(`_spEDM_RcppKNNIndice`, embedding_space, target_idx, k, lib)
}
RcppDistKNNIndice <- function(dist_mat, target_idx, k, lib) {
.Call(`_spEDM_RcppDistKNNIndice`, dist_mat, target_idx, k, lib)
}
RcppDistSortedIndice <- function(dist_mat, lib, include_self = FALSE) {
.Call(`_spEDM_RcppDistSortedIndice`, dist_mat, lib, include_self)
}
RcppLinearTrendRM <- function(vec, xcoord, ycoord, NA_rm = FALSE) {
.Call(`_spEDM_RcppLinearTrendRM`, vec, xcoord, ycoord, NA_rm)
}
RcppSVD <- function(X) {
.Call(`_spEDM_RcppSVD`, X)
}
RcppDeLongPlacements <- function(cases, controls, direction) {
.Call(`_spEDM_RcppDeLongPlacements`, cases, controls, direction)
}
RcppSpatialBlockBootstrap <- function(block, seed = 42L) {
.Call(`_spEDM_RcppSpatialBlockBootstrap`, block, seed)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.