Nothing
#
# This file contains the indicator function based on the power-law range
# (how much of the data behaves like a power law?)
#
#' @title Power-law range indicator
#'
#' @description Compute the power-law range of a matrix
#'
#' @param mat A logical matrix, or a list of logical matrices
#'
#' @param merge Controls whether the patch-size distributions of the input
#' matrices are merged together before computing the power-law range. Setting
#' this value to \code{TRUE} makes the function return a single value even
#' if multiple matrices are given as input.
#'
#' @param xmin_bounds A vector of two integer values, defining a range in which
#' to search for the best xmin (see Details).
#'
#' @details
#'
#' Some ecosystems show typical changes in their patch-size
#' distribution as they become more and more degraded. In particular, an
#' increase in the truncation of the patch-size distribution (PSD) is expected
#' to occur. The power-law range (PLR) measures the truncation of the PSD
#' in a single value (see also \code{\link{patchdistr_sews}} for more details).
#'
#' To compute the PLR, power-laws are fitted with a variable
#' minimum patch size (\eqn{x_{min}}) and the one with the lowest Kolmogorov-Smirnov
#' distance to the empirical distribution is retained. PLR is then computed
#' using this best-fitting \eqn{x_{min}} as:
#'
#' \deqn{\frac{log(x_{max}) - log(x_{min})}{log(x_{max}) - log(x_{smallest})}}{ (log(xmax) - log(xmin))/(log(xmax) - log(xsmallest))}
#'
#' where \eqn{x_{max}}{x_max} is the maximum observed patch size, and
#' \eqn{x_{smallest}}{x_smallest} is the minimum observed patch size.
#'
#' @references
#'
#' Clauset, A., Shalizi, C. R., & Newman, M. E. (2009).
#' Power-law distributions in empirical data. SIAM review, 51(4), 661-703.
#'
#' Berdugo, M., Kefi, S., Soliveres, S. & Maestre, F.T. (2017). Plant spatial
#' patterns identify alternative ecosystem multifunctionality states in
#' global drylands. Nature in Ecology and Evolution.
#'
#' @return A \code{data.frame} with columns \code{minsize}, \code{maxsize} which are the
#' observed minimum and maximum patch sizes, the estimated \eqn{x_{min}} as column
#' \code{xmin} and the value of the power-law range as \code{plrange}. If multiple
#' matrices were provided, then a list of data.frames is returned
#'
#' @seealso \code{\link{patchdistr_sews}}
#'
#' @examples
#' \donttest{
#' forestgap.plr <- indicator_plrange(forestgap)
#' do.call(rbind, forestgap.plr) # convert results to data.frame
#'
#' # Restrict to small xmins
#' forestgap.plr2 <- indicator_plrange(forestgap, xmin_bounds = c(1, 10))
#' do.call(rbind, forestgap.plr2)
#' }
#'@export
indicator_plrange <- function(mat,
merge = FALSE,
xmin_bounds = NULL) {
if ( !merge && is.list(mat) ) {
# Returns a list of lists
return( lapply(mat, indicator_plrange, merge, xmin_bounds) )
}
psd <- patchsizes(mat, merge = merge)
if ( is.null(xmin_bounds) ) {
xmin_bounds <- range(psd)
}
# If there are not enough patches to work with -> return NA
if ( length(unique(psd)) <= 2 ) {
warning('Not enough different patch sizes to estimate xmin: returning NA')
result <- data.frame(min(psd), max(psd), NA, NA)
} else {
# Compute xmin and range
plrange_result <- plrange(psd, xmin_bounds) # returns xmin also
result <- data.frame(min(psd), max(psd), plrange_result)
}
names(result) <- c("minsize", "maxsize", "xmin_est", "plrange")
return(result)
}
#
# This file contains the indicator function based on the power-law range
# (how much of the data behaves like a power law?)
#
#' @title Power-law range indicator
#'
#' @description Compute the power-law range of a matrix
#'
#' @param mat A logical matrix, or a list of logical matrices
#'
#' @param xmin_bounds A vector of two integer values, defining a range in which
#' to search for the best xmin (see Details).
#'
#'
#' @details
#'
#' Some ecosystems show typical changes in their patch-size
#' distribution as they become more and more degraded. In particular, an
#' increase in the truncation of the patch-size distribution (PSD) is expected
#' to occur. The power-law range (PLR) measures the truncation of the PSD
#' in a single value (see also \code{\link{patchdistr_sews}} for more details).
#'
#' To compute the PLR, power-laws are fitted with a variable
#' minimum patch size (xmin) and the one with the lowest Kolmogorov-Smirnov
#' distance to the empirical distribution is retained. PLR is then computed
#' using this best-fitting xmin:
#'
#' \deqn{\frac{log(x_{max}) - log(x_{min})}{log(x_{max}) - log(x_{smallest})}}{ (log(xmax) - log(xmin))/(log(xmax) - log(xsmallest))}
#'
#' where \eqn{x_{max}}{x_max} is the maximum observed patch size, and
#' \eqn{x_{smallest}}{x_smallest} is the minimum observed patch size.
#'
#' @references
#'
#' Clauset, A., Shalizi, C. R., & Newman, M. E. (2009).
#' Power-law distributions in empirical data. SIAM review, 51(4), 661-703.
#'
#' Berdugo, M., Kefi, S., Soliveres, S. & Maestre, F.T. (2017). Plant spatial
#' patterns identify alternative ecosystem multifunctionality states in
#' global drylands. Nature in Ecology and Evolution.
#'
#' @return A named vector containing the power-law range value
#'
#' @seealso \code{\link{patchdistr_sews}}
#'
#' @examples
#' \donttest{
#' forestgap.plr <- raw_plrange(forestgap[[2]])
#'
#' # Restrict to small xmins
#' forestgap.plr2 <- indicator_plrange(forestgap[[2]], xmin_bounds = c(1, 10))
#' }
#'@export
raw_plrange <- function(mat, xmin_bounds = NULL) {
psd <- patchsizes(mat)
if ( is.null(xmin_bounds) ) {
xmin_bounds <- range(psd)
}
plrange_result <- plrange(psd, xmin_bounds)
return( c(plrange = plrange_result[ ,"plrange"]) )
}
plrange <- function(psd, xmin_bounds) {
if ( any(psd == 0) ) {
warning(paste0("You have zeros in your patch size distribution, plrange ",
"will be NaN"))
}
# If psd is empty, then return NA
if ( length(unique(psd)) <= 1) {
return( data.frame(xmin_est = NA_real_, plrange = NA_real_) )
}
xsmallest <- min(psd)
xmax <- max(psd)
xmin <- xmin_estim(psd, bounds = xmin_bounds)
if ( is.na(xmin) ) { # finding xmin failed
result <- data.frame(NA_real_, NA_real_)
} else {
result <- data.frame(xmin, 1 - (log10(xmin) - log10(xsmallest)) /
(log10(xmax) - log10(xsmallest)))
}
names(result) <- c('xmin_est', 'plrange')
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.