Nothing
################################################################################
# Internal Functions
################################################################################
#' Get the FWHM from the difference between band values
#'
#' @param bands band values. numeric
#'
#' @return FWHM as a numeric vector
#' @keywords internal
fwhm_from_band_diff = function(bands){
wave_diff = diff(bands)
c(wave_diff[1], wave_diff)
}
#' Resample the FWHM to a new set of bands using a gaussian model
#'
#' @param old_bands band values of the original spectra
#' @param old_fwhm FWHM for the original spectra
#' @param new_bands band values for the resampled spectra
#' @param new_fwhm FWHM for the resampled spectra
#' @param return_type Either "max" (default) or "old". Max returns the maximum from either the old or the new FWHM for each band
#' @param k number of FWHM categories. Defaults to 0, which means, return the FWHM in as much detail as possible.
#'
#' @return a numeric vector of FWHM estimates
#'
#' @importFrom stats dnorm kmeans
#'
#' @keywords internal
i_make_fwhm = function(old_bands,
old_fwhm,
new_bands,
new_fwhm,
return_type = "max",
k = 0){
# Standard deviation from FWHM
sigma0 = new_fwhm / (2 * sqrt(2 * log(2)))
# Resample the OLD sensor FWHM to the resolution of the NEW sensor
fwhm_old_new = mapply(function(l, s){
k0 = stats::dnorm(old_bands, mean = l, sd = s)
sum(old_fwhm * k0) / sum(k0)
}, l = new_bands, s = sigma0)
if(return_type == "max"){
fwhm = pmax(new_fwhm, fwhm_old_new)
} else if (return_type == "old"){
fwhm = fwhm_old_new
} else {
stop("return_type must be either 'max' or 'old'")
}
# K
n_unique = length(unique(fwhm))
if(k == 0){
NULL
} else if (k > n_unique) {
k = n_unique
message("setting k to the number of unique band diff values")
clust = stats::kmeans(fwhm, k)
fwhm = clust$centers[clust$cluster, 1]
} else {
clust = kmeans(fwhm, k)
fwhm = clust$centers[clust$cluster, 1]
}
names(fwhm) = new_bands
return(fwhm)
}
################################################################################
# Exported Functions
################################################################################
#' Resample the FWHM to a new set of bands using a gaussian model
#'
#' @param spec spectra object
#' @param new_bands band values to resample the spectra to
#' @param new_fwhm FWHM for the new bands
#' @param return_type either "max" or "old". If "old" (default), it returns the fwhm inferred from the original's spectra bands. If max (default), it returns the max between the new and old fwhm.
#' @param k number of unique FHWM to estimate
#'
#' @return FWHM as a numeric vector
#' @export
make_fwhm = function(spec,
new_bands,
new_fwhm = NULL,
return_type = "max",
k = 3){
if(is.null(new_fwhm)){
new_fwhm = fwhm_from_band_diff(new_bands)
}
b = bands(spec)
fwhm = i_make_fwhm(old_bands = b,
old_fwhm = fwhm_from_band_diff(b),
new_bands = new_bands,
new_fwhm = new_fwhm,
return_type = return_type,
k = k)
return(fwhm)
}
#' Resample spectra
#'
#' @param spec spectra object
#' @param new_bands band values to resample the spectra to
#' @param fwhm FWHM for the new bands
#'
#' @return resampled spectra
#'
#' @export
resample = function(spec,
new_bands,
fwhm) {
bands = bands(spec)
reflectance = value(spec)
if(length(fwhm) == 1){
fwhm = rep(fwhm, length.out = length(new_bands))
} else if (length(fwhm) == length(new_bands)){
NULL
} else {
stop("provide a single fwhm value or one for each new_band")
}
## Enforce increasing bands in spectra object
if(! i_is_increasing(bands)){
stop("resample requires strictly increasing band values.\nMatch sensor overlap before attempting to resample the spectra.")
}
margin = fwhm/4
band_range = range(bands(spec)) + c(-head(margin, 1), tail(margin, 1))
within_range = which(new_bands > band_range[1] & new_bands < band_range[2])
if(length(within_range) < length(new_bands)){
message("trimmed new band values to fall within the range of the orignial bands.")
}
new_bands = new_bands[within_range]
fwhm = fwhm[within_range]
# Standard deviation from FWHM
sigma = fwhm / (2 * sqrt(2 * log(2)))
# Gaussian kernel mapping bands to new bands
gauss_kernel = outer(bands,
seq_along(new_bands) , # Indices to iterate over means and sds
function(x, i){
stats::dnorm(x, mean = new_bands[i], sd = sigma[i])
})
# Normalize gaussian kernel weights
gauss_kernel = sweep(gauss_kernel, 2, colSums(gauss_kernel), "/")
# Compute the resampled reflectance
resampled_reflectance = reflectance %*% gauss_kernel
# Create the resulting spectra object
s = spectra(value = resampled_reflectance,
bands = new_bands,
names = names(spec),
meta = meta(spec))
s
}
#' #' Resample spectra
#' #'
#' #' \code{resample} returns spectra resampled to new bands using gaussian smoothing.
#' #' \code{resample} is meant to match spectra from one set of bands to a similar set
#' #' of values. \code{resample} doesn't predict values for bands outside of the original
#' #' range.
#' #'
#' #' @param x spectra object. bands must be strictly increasing
#' #' @param new_bands numeric vector of bands to sample from spectra
#' #' @param ... additional parameters passed to the \code{smooth.spline} function.
#' #' @return spectra object with resampled spectra
#' #'
#' #' @importFrom stats predict
#' #'
#' #' @author Jose Eduardo Meireles
#' #' @export
#' #'
#' #' @examples
#' #' library(spectrolab)
#' #' spec = as_spectra(spec_matrix_example, name_idx = 1)
#' #' spec = resample(spec, new_bands = seq(400, 2400, 0.5), parallel = FALSE)
#' resample = function(x, new_bands, ...) {
#' UseMethod("resample")
#' }
#'
#'
#' #' @describeIn resample Resample spectra
#' #' @export
#' resample_spline.spectra = function(x, new_bands, ...) {
#'
#' w = bands(x)
#'
#' ## Simply subset the current spectra if all new_bands are a in the set of
#' ## current bands
#' if(all(new_bands %in% w)){
#' return(x[ , new_bands ])
#' }
#'
#' ## Enforce increasing bands in spectra object
#' if(! i_is_increasing(bands(x))){
#' stop("resample requires strictly increasing band values.\nMatch sensor overlap before attempting to resample the spectra.")
#' }
#'
#' ## Do not predict points outside the original band range
#' r = range(bands(x))
#'
#' if(min(new_bands) < r[1] || max(new_bands) > r[2]){
#' stop("New band values must be within the data's range: ", r[1], " to ", r[2])
#' }
#'
#' ## Smooth and predict
#' message("Using spline to predict value at new bands...")
#' s = smooth_spline(x, return_fn = TRUE, ...)
#' f = function(o, p){ stats::predict(o, p)[["y"]] }
#' g = lapply(X = s, FUN = f, p = new_bands)
#' message("Beware the spectra are now partially smoothed.")
#'
#' ## Construct new spectra object and return
#' spectra(value = do.call(rbind, g),
#' bands = new_bands,
#' names = names(x),
#' meta = meta(x))
#' }
#'
#'
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.