rgidwpred | R Documentation |
This function is to make spatial predictions using the hybrid method of random forest in ranger and inverse distance weighting (RGIDW).
rgidwpred( longlat, trainx, trainy, longlatpredx, predx, mtry = function(p) max(1, floor(sqrt(p))), num.trees = 500, min.node.size = NULL, type = "response", num.threads = NULL, verbose = FALSE, idp = 2, nmax = 12, ... )
longlat |
a dataframe contains longitude and latitude of point samples (i.e., trainx and trainy). |
trainx |
a dataframe or matrix contains columns of predictive variables. |
trainy |
a vector of response, must have length equal to the number of rows in trainx. |
longlatpredx |
a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted. |
predx |
a dataframe or matrix contains columns of predictive variables for the grids to be predicted. |
mtry |
a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call. |
num.trees |
number of trees. By default, 500 is used. |
min.node.size |
Default 1 for classification, 5 for regression. |
type |
Type of prediction. One of 'response', 'se', 'terminalNodes' with default 'response'. See ranger::predict.ranger for details. |
num.threads |
number of threads. Default is number of CPUs available. |
verbose |
Show computation status and estimated runtime.Default is FALSE. |
idp |
numeric; specify the inverse distance weighting power. |
nmax |
for local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used. |
... |
other arguments passed on to randomForest or gstat. |
A dataframe of longitude, latitude and predictions.
This function is largely based on rfidwpred.
Jin Li
Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J Stat Softw 77:1-17. http://dx.doi.org/10.18637/jss.v077.i01.
## Not run: data(petrel) data(petrel.grid) rgidwpred1 <- rgidwpred(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 3], petrel.grid[, c(1,2)], petrel.grid, num.trees = 500, idp = 2, nmax = 12) names(rgidwpred1) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.