inst/shiny-squid/source/server/modules/module6/svr_mod6_step_2.R

#Server functions for module 6 step 2
c(
  
    ######### Set variables #########  
    Mod6Step2updateVind <- function(input, nb.IS){
      m <- matrix(rep(0,nb.IS^2),nb.IS)
      diag(m)[1] <- input$Mod6Step2_Vi
      diag(m)[2] <- input$Mod6Step2_Vs
      m[2,1]     <- input$Mod6Step2_CorIS
      return(m)
    },
      # Set hidden variables
       output$Mod6Step2_hidden <- renderUI({
          list(
            numericInput("Mod6Step2_Tmax", "", Modules_VAR$Tmax$max),
            shinyMatrix::matrixInput("Mod6Step2_Vind", value = Mod6Step2updateVind(input, nb.IS), class = "numeric"),
            shinyMatrix::matrixInput("Mod6Step2_B", value = matrix(c(0,sqrt(input$Mod6Step2_Vbx),0,0),1), class = "numeric"),
            checkboxInput("Mod6Step2_X1_state", "", value = TRUE),
            checkboxInput("Mod6Step2_X1_sto_state", "", value = TRUE),
            checkboxInput("Mod6Step2_X1_sto_shared", "", value = TRUE),
            numericInput("Mod6Step2_X1_sto_V","", 1, min = 0, max = 1, step = 0.001),
            checkboxInput("Mod6Step2_ST_ind", "", value = FALSE)
          )
      }),
 	    outputOptions(output, "Mod6Step2_hidden", suspendWhenHidden = FALSE),

    # Run simulation and return results
    Mod6Step2_output <- reactive({
      
      if(input$Mod6Step2_Run == 0) # if Run button is pressed
        return(NULL)
      
      isolate({ 
        
        updateCheckboxInput(session, "isRunning", value = TRUE)
        
        # Call app main function
        data <- squid::squidR(input, module="Mod6Step2")  
        
        LMR      <- lme4::lmer(Phenotype ~ X1 + (X1|Individual), data = data$sampled_data)
        RANDEF   <- as.data.frame(lme4::VarCorr(LMR))$vcov
        
        data$LMR       <- LMR
        
        data$Vi        <- round(RANDEF[1],2)
        data$Vs        <- round(RANDEF[2],2)
        data$CorIS     <- round(RANDEF[3]/sqrt(RANDEF[1]*RANDEF[2]),2)
        data$Vr        <- round(RANDEF[4],2) 
        data$B0        <- round(lme4::fixef(LMR)[1],2) 
        data$B1        <- round(lme4::fixef(LMR)[2],2) 
        
        # Remove covariance
        if(input$Mod6Step2_CorIS != 0){
          
          df    <- as.data.table(data$sampled_data)
          newdf <- unique(copy(df[ , .(Individual, S1)]))[
                                   , Individual := sample(Individual)]

          setkey(df,Individual)
          setkey(newdf,Individual)
          df <- df[, S1:=NULL][newdf, nomatch=0]

          df[ , Phenotype := ((B0+I) + (B1+S1)*X1 + e)]
          
          LMR2  <- lme4::lmer(Phenotype ~ X1 + (X1|Individual), data = df)

        }else{
          LMR2 <- LMR
        }
        
        data$LMR2 <- LMR2
        
        # data$df <- as.data.frame(df)
        
        updateCheckboxInput(session, "isRunning", value = FALSE)
        
        return(data)
      })  
    }),
    
    Mod6Step2_table <- reactive({
      
      data    <- Mod6Step2_output()
      
      myTable <- data.frame(
        "True"       = c("$\\text{Fixed effects}$",
                        paste("Mean of the trait ($",EQ3$mean0,"$) =",round(input$Mod6Step2_B[1],2)),
                        paste("Population-specific slope of the environmental effect ($",NOT$mean,"$) =",round(input$Mod6Step2_B[2],2)),
                        "$\\text{Random effects}$",
                        paste("Among individual variance in intercept ($V_",NOT$devI,"$) =",input$Mod6Step2_Vi),
                        paste("Among-individual variance in slopes (random slopes; $V_",NOT$devS,"$) =",input$Mod6Step2_Vs),
                        paste("Correlation between individual specific intercepts and slopes ($Cor_{",NOT$devI,",",NOT$devS,"}$) =",input$Mod6Step2_CorIS),
                        paste("Residual variance ($V_",NOT$residualUpper,"$) =",input$Mod6Step2_Ve)),
        "Estimated" = c("$\\text{Fixed effects}$",
                        paste("Sampled mean of the trait ($",NOT$mean,"'_0$) =",ifelse(!is.null(data),data$B0,"...")),
                        paste("Estimated population-specific slope of the environmental effect ($",NOT$mean,"'$) =",ifelse(!is.null(data),data$B1,"...")),
                        "$\\text{Random effects}$",
                        paste("Sampled among-individual variance in intercept ($V'_",NOT$devI,"$) = ", ifelse(!is.null(data),data$Vi,"...")),
                        paste("Sampled among-individual variance in slope ($V'_",NOT$devS,"$) = ", ifelse(!is.null(data),data$Vs,"...")),
                        paste("Correlation between individual specific intercepts and slopes ($Cor'_{",NOT$devI,",",NOT$devS,"}$) =", ifelse(!is.null(data),data$CorIS,"...")),
                        paste("Residual variance of sample ($V'_",NOT$residualUpper,"$) = ", ifelse(!is.null(data),data$Vr,"...")))
      )  
      
      return(getTable(myTable))
      myTable <- data.frame("test"=c(1,2),"test"=c(1,2))
      
      return(getTable(myTable))
    }),
    
    # Display results (table)
    output$Mod6Step2_summary_table <- renderUI({Mod6Step2_table()}),
    
    output$Mod6Step2_plot <- renderPlot({ 

      data  <- Mod6Step2_output()
      
      if(!is.null(data)){
        
        data1 <- data$sampled_data
        data2 <- data$sampled_data
        
        data1$covariance     <- "With covariance"
        data1$Phenotype_pred <- stats::predict(data[["LMR"]])
        
        data2$covariance     <- "Without covariance"
        data2$Phenotype_pred <- stats::predict(data[["LMR2"]])

        myDf <- rbind(data1, data2)
        myDf$covariance <- factor(myDf$covariance, levels = c("Without covariance", "With covariance"))

        ggplot2::ggplot(data = myDf, 
                        ggplot2::aes(y     = Phenotype_pred, 
                                     x     = X1, 
                                     color = as.factor(Individual))) +
          geom_line() +
          ggplot2::theme(legend.position="none") +
          ggplot2::facet_grid(. ~ covariance) +
          ggplot2::xlab("Environmental effect") + 
          ggplot2::ylab("Phenotype")
        
        # print(ggplot2::ggplot(data = myDf, ggplot2::aes(y     = Phenotype,
        #                                                 x     = X1,
        #                                                 color = as.factor(Individual))) +
        #               ggplot2::stat_smooth(method = "lm", se=FALSE) +
        #               ggplot2::theme(legend.position="none") +
        #               ggplot2::facet_grid(. ~ covariance) +
        #               ggplot2::xlab("Environmental effect") +
        #               ggplot2::ylab("Phenotype"))
        # 
        # defaultPlot()

      }else{
        defaultPlot()
      }
      
    })
) # End return

Try the squid package in your browser

Any scripts or data that you put into this service are public.

squid documentation built on Jan. 22, 2022, 1:06 a.m.