Nothing
#' @import forecast
#' @importFrom stats optim
#' @importFrom stats qnorm
#' @importFrom stats quantile
#' @importFrom stats time
#' @rdname AutoSTR
#' @title Automatic STR decomposition for time series data
#' @description Automatically selects parameters for an STR decomposition of time series data.
#' The time series should be of class \code{ts} or \code{msts}.
#' @param data A time series of class \code{ts} or \code{msts}.
#' @inheritParams robust
#' @inheritParams gapCV
#' @inheritParams lambdas
#' @inheritParams reltol
#' @inheritParams confidence
#' @param nsKnots An optional vector parameter, defining the number of seasonal knots (per period) for each sesonal component.
#' @inheritParams trace
#' @return A structure containing input and output data.
#' It is an \strong{S3} class \code{STR}, which is a list with the following components:
#' \itemize{
#' \item \strong{output} -- contains decomposed data. It is a list of three components:
#' \itemize{
#' \item \strong{predictors} -- a list of components where each component
#' corresponds to the input predictor. Every such component is a list containing the following:
#' \itemize{
#' \item \strong{data} -- fit/forecast for the corresponding predictor (trend, seasonal component, flexible or seasonal predictor).
#' \item \strong{beta} -- beta coefficients of the fit of the coresponding predictor.
#' \item \strong{lower} -- optional (if requested) matrix of lower bounds of confidence intervals.
#' \item \strong{upper} -- optional (if requested) matrix of upper bounds of confidence intervals.
#' }
#' \item \strong{random} -- a list with one component \strong{data}, which contains residuals of the model fit.
#' \item \strong{forecast} -- a list with two components:
#' \itemize{
#' \item \strong{data} -- fit/forecast for the model.
#' \item \strong{beta} -- beta coefficients of the fit.
#' \item \strong{lower} -- optional (if requested) matrix of lower bounds of confidence intervals.
#' \item \strong{upper} -- optional (if requested) matrix of upper bounds of confidence intervals.
#' }
#' }
#' \item \strong{input} -- input parameters and lambdas used for final calculations.
#' \itemize{
#' \item \strong{data} -- input data.
#' \item \strong{predictors} - input predictors.
#' \item \strong{lambdas} -- smoothing parameters used for final calculations (same as input lambdas for STR method).
#' }
#' \item \strong{cvMSE} -- optional cross validated (leave one out) Mean Squared Error.
#' \item \strong{optim.CV.MSE} -- best cross validated Mean Squared Error (n-fold) achieved during minimisation procedure.
#' \item \strong{nFold} -- the input \code{nFold} parameter.
#' \item \strong{gapCV} -- the input \code{gapCV} parameter.
#' \item \strong{method} -- always contains string \code{"AutoSTR"} for this function.
#' }
#' @author Alexander Dokumentov
#' @references Dokumentov, A., and Hyndman, R.J. (2022)
#' STR: Seasonal-Trend decomposition using Regression,
#' \emph{INFORMS Journal on Data Science}, 1(1), 50-62.
#' \url{https://robjhyndman.com/publications/str/}
#' @seealso \code{\link{STR}}
#' @examples
#' \donttest{
#' # Decomposition of a multiple seasonal time series
#' decomp <- AutoSTR(calls)
#' plot(decomp)
#'
#' # Decomposition of a monthly time series
#' decomp <- AutoSTR(log(grocery))
#' plot(decomp)
#' }
#' @export
AutoSTR <- function(
data,
robust = FALSE,
gapCV = NULL,
lambdas = NULL,
reltol = 0.001,
confidence = NULL,
nsKnots = NULL,
trace = FALSE
) {
nFold <- 5 # Not configurable parameter
if ("msts" %in% class(data)) {
periods <- attr(data, "msts")
} else if ("ts" %in% class(data)) {
periods <- attr(data, "tsp")[3] # For class ts
} else {
stop('Parameter "data" must be of class "msts".')
}
if (min(periods) >= length(data) / 2) {
stop("Series too short")
}
periods <- periods[periods < length(data) / 2] # Removing periods which are too long
if (identical(periods, 1)) {
stop("Non-seasonal time series")
}
if (any(confidence <= 0 | confidence >= 1)) {
stop("confidence must be between 0 and 1")
}
if (is.null(gapCV)) {
gapCV <- max(min(max(periods), floor(length(data) / nFold) - 1), 1)
}
times <- as.vector(time(data))
vData <- as.vector(data)
trendSeasonalStructure <- list(
segments = list(c(0, 1)),
sKnots = list(c(1, 0))
)
trendSeasons <- rep(1, length(vData))
trendTimeKnots <- seq(
from = first(times),
to = last(times),
length.out = max(16, length(vData) / max(periods) * 2 + 1)
)
trendData <- rep(1, length(vData))
trend <- list(
name = "Trend",
data = trendData,
times = times,
seasons = trendSeasons,
timeKnots = trendTimeKnots,
seasonalStructure = trendSeasonalStructure,
lambdas = c(1, 0, 0)
)
predictors <- list(trend)
for (i in seq_along(periods)) {
p <- periods[i]
if (is.null(nsKnots[i])) {
mp <- max(1, periods[periods < p])
length.out <- floor(p / sqrt(mp)) + 1
} else {
length.out <- nsKnots[i]
}
seasonalStructure <- list(
segments = list(c(0, p)),
sKnots = c(
as.list(
tail(head(seq(from = 0, to = p, length.out = length.out), -1), -1)
),
list(c(p, 0))
)
)
seasons <- seq_along(vData) %% p
seasonTimeKnots <- seq(
from = first(times),
to = last(times),
length.out = length(vData) / max(periods) + 1
)
seasonData <- rep(1, length(vData))
season <- list(
name = paste("Seasonality", p),
data = seasonData,
times = times,
seasons = seasons,
timeKnots = seasonTimeKnots,
seasonalStructure = seasonalStructure,
lambdas = c(1, 1, 1)
)
predictors[[length(predictors) + 1]] <- season
}
str <- STR(
data,
predictors,
gapCV = gapCV,
nFold = nFold,
reltol = reltol,
confidence = confidence,
lambdas = lambdas,
trace = trace,
robust = robust
)
return(str)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.