Nothing
ht_two_prop_sim <- function(y, x, success, null, alternative, nsim, seed,
x_name, y_name,
show_var_types, show_summ_stats, show_res,
show_eda_plot, show_inf_plot){
# set seed
if(!is.null(seed)){ set.seed(seed) }
# calculate n1 and n2
ns <- by(y, x, length)
n1 <- as.numeric(ns[1])
n2 <- as.numeric(ns[2])
# calculate p-hat1 and p-hat2
suc1 <- sum(y[x == levels(x)[1]] == success)
suc2 <- sum(y[x == levels(x)[2]] == success)
p_hat1 <- suc1 / n1
p_hat2 <- suc2 / n2
# calculate difference in p-hats
p_hat_diff <- p_hat1 - p_hat2
# create null distribution
sim_dist <- rep(NA, nsim)
for(i in 1:nsim){
y_sim <- sample(y, size = (n1+n2), replace = FALSE)
suc1_sim <- sum(y_sim[x == levels(x)[1]] == success)
suc2_sim <- sum(y_sim[x == levels(x)[2]] == success)
p_hat1_sim <- suc1_sim / n1
p_hat2_sim <- suc2_sim / n2
sim_dist[i] <- p_hat1_sim - p_hat2_sim
}
# shading cutoffs
if(alternative == "greater"){
x_min <- p_hat_diff
x_max <- Inf
}
if(alternative == "less"){
x_min <- -Inf
x_max <- p_hat_diff
}
if(alternative == "twosided"){
if(p_hat_diff >= null){
x_min <- c(null - (p_hat_diff - null), p_hat_diff)
x_max <- c(-Inf, Inf)
}
if(p_hat_diff <= null){
x_min <- c(p_hat_diff, null + (null - p_hat_diff))
x_max <- c(-Inf, Inf)
}
}
# calculate p-value
if(alternative == "greater"){ p_value <- sum(sim_dist >= p_hat_diff) / nsim }
if(alternative == "less"){ p_value <- sum(sim_dist <= p_hat_diff) / nsim }
if(alternative == "twosided"){
if(p_hat_diff > null){
p_value <- min(2 * (sum(sim_dist >= p_hat_diff) / nsim), 1)
}
if(p_hat_diff < null){
p_value <- min(2 * (sum(sim_dist <= p_hat_diff) / nsim), 1)
}
}
# print variable types
if(show_var_types == TRUE){
n_x_levels <- length(levels(x))
n_y_levels <- length(levels(y))
cat(paste0("Response variable: categorical (", n_x_levels, " levels, success: ", success, ")\n"))
cat(paste0("Explanatory variable: categorical (", n_y_levels, " levels) \n"))
}
# print summary statistics
if(show_summ_stats == TRUE){
gr1 <- levels(x)[1]
gr2 <- levels(x)[2]
cat(paste0("n_", gr1, " = ", n1, ", p_hat_", gr1, " = ", round(p_hat1, 4), "\n"))
cat(paste0("n_", gr2, " = ", n2, ", p_hat_", gr2, " = ", round(p_hat2, 4), "\n"))
}
# print results
if(show_res == TRUE){
if(alternative == "greater"){
alt_sign <- ">"
} else if(alternative == "less"){
alt_sign <- "<"
} else {
alt_sign <- "!="
}
cat(paste0("H0: p_", gr1, " = p_", gr2, "\n"))
cat(paste0("HA: p_", gr1, " ", alt_sign, " p_", gr2, "\n"))
p_val_to_print <- ifelse(round(p_value, 4) == 0, "< 0.0001", round(p_value, 4))
cat(paste0("p_value = ", p_val_to_print))
}
# eda_plot
d_eda <- data.frame(y = y, x = x)
if(which(levels(y) == success) == 1){
fill_values = c("#1FBEC3", "#8FDEE1")
} else {
fill_values = c("#8FDEE1", "#1FBEC3")
}
eda_plot <- ggplot2::ggplot(data = d_eda, ggplot2::aes(x = x, fill = y), environment = environment()) +
ggplot2::geom_bar(position = "fill") +
ggplot2::scale_fill_manual(values = fill_values) +
ggplot2::xlab(x_name) +
ggplot2::ylab("") +
ggplot2::ggtitle("Sample Distribution") +
ggplot2::guides(fill = ggplot2::guide_legend(title = y_name))
# inf_plot
d_inf <- data.frame(sim_dist = sim_dist)
inf_plot <- ggplot2::ggplot(data = d_inf, ggplot2::aes(x = sim_dist), environment = environment()) +
ggplot2::geom_histogram(fill = "#CCCCCC", binwidth = diff(range(sim_dist)) / 20) +
ggplot2::annotate("rect", xmin = x_min, xmax = x_max, ymin = 0, ymax = Inf,
alpha = 0.3, fill = "#FABAB8") +
ggplot2::xlab("simulated difference in means") +
ggplot2::ylab("") +
ggplot2::ggtitle("Null Distribution") +
ggplot2::geom_vline(xintercept = p_hat_diff, color = "#F57670", lwd = 1.5)
# print plots
if(show_eda_plot & !show_inf_plot){
print(eda_plot)
}
if(!show_eda_plot & show_inf_plot){
print(inf_plot)
}
if(show_eda_plot & show_inf_plot){
gridExtra::grid.arrange(eda_plot, inf_plot, ncol = 2)
}
# return
return(list(sim_dist = sim_dist, p_value = p_value))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.