Nothing
#' @title Summarize multiple response variables by group or pattern
#'
#' @description `select_group_tbl()` displays frequency counts and
#' percentages for multiple response variables (e.g., a series of
#' questions where participants answer "Yes" or "No" to each item) as
#' well as ordinal variables (such as Likert or Likert-type items with
#' responses ranging from "Strongly Disagree" to "Strongly Agree", where
#' respondents select one response per statement, question, or item),
#' grouped either by another variable in your dataset or by a matched
#' pattern in the variable names.
#'
#' @param data A data frame.
#' @param var_stem A character vector with one or more elements, where each
#' represents either a variable stem or the complete name of a variable present
#' in `data`. A variable 'stem' refers to a common naming pattern shared among
#' related variables, typically reflecting repeated measures of the same idea
#' or a group of items assessing a single concept.
#' @param var_input A character string specifying whether the values supplied
#' to `var_stem` should be treated as variable stems (`stem`) or as complete
#' variable names (`name`). By default, this is set to `stem`, so the function
#' searches for variables that begin with each stem provided. Setting this
#' argument to `name` directs the function to look for variables that exactly
#' match the provided names.
#' @param regex_stem A logical value indicating whether to use Perl-compatible
#' regular expressions when searching for variable stems. Default is `FALSE`.
#' @param ignore_stem_case A logical value indicating whether the search for
#' columns matching the supplied `var_stem` is case-insensitive. Default is
#' `FALSE`.
#' @param group A character string representing a variable name or a pattern
#' used to search for variables in `data`.
#' @param group_type A character string that defines how the `group` argument
#' should be interpreted. Should be one of `pattern` or `variable`. Defaults to
#' `variable`, which searches for a matching variable name in `data`.
#' @param group_name An optional character string used to rename the `group`
#' column in the final table When `group_type` is set to `variable`, the column
#' name defaults to the matched variable name from `data`. When set to `pattern`,
#' the default column name is `group`.
#' @param margins A character string that determines how percentage values are
#' calculated; whether they sum to one across rows, columns, or the entire
#' variable (i.e., all). Defaults to `all`, but can also be set to `rows` or
#' `columns`. Note: This argument only affects the final table when `group_type`
#' is `variable`.
#' @param regex_group A logical value indicating whether to use Perl-compatible
#' regular expressions when searching for `group` variables or matching variable
#' name patterns. Default is `FALSE`.
#' @param ignore_group_case A logical value specifying whether the search for a
#' grouping variable (if `group_type` is `variable`) or for variables matching a
#' pattern (if `group_type` is `pattern`) should be case-insensitive. Default is
#' `FALSE`. Set to `TRUE` to ignore case.
#' @param remove_group_non_alnum A logical value indicating whether to remove
#' all non-alphanumeric characters (i.e., anything that is not a letter or
#' number) from `group`. Default is `TRUE`.
#' @param na_removal A character string that specifies the method for handling
#' missing values: `pairwise` or `listwise`. Defaults to `listwise`.
#' @param pivot A character string that determines the format of the table. By
#' default, `longer` returns the data in the long format. To return the data in
#' the `wide` format, specify `wider`.
#' @param only A character string or vector of character strings of the types of
#' summary data to return. Default is `NULL`, which returns both counts and
#' percentages. To return only counts or percentages, use `count` or `percent`,
#' respectively.
#' @param var_labels An optional named character vector or list used to assign
#' custom labels to variable names. Each element must be named and correspond
#' to a variable included in the returned table. If `var_input` is set to `stem`,
#' and any element is either unnamed or refers to a variable not present in the
#' table, all labels will be ignored and the table will be printed without them.
#' @param ignore An optional named vector or list indicating values to exclude
#' from variables matching specified stems (or names), and, if applicable, from a
#' grouping variable in `data`. Defaults to `NULL`, indicating that all values are
#' retained. To specify exclusions for variables identified by `var_stem`, use the
#' corresponding stems or variable names as names in the vector or list. To exclude
#' multiple values from these variables or a grouping variable, supply them as a
#' named list.
#' @param force_pivot A logical value that enables pivoting to the 'wider' format
#' even when variables have inconsistent value sets. By default, this is set to
#' `FALSE` to prevent reshaping errors when values differ across variables in the
#' returned table. Set to `TRUE` to override this safeguard and pivot to the
#' 'wider' format regardless of value inconsistencies.
#'
#' @returns A tibble displaying the count and percentage for each category in
#' a multi-response variable, grouped either by a specified variable in the
#' dataset or by matching patterns in variable names.
#'
#' @author Ama Nyame-Mensah
#'
#' @examples
#' select_group_tbl(data = stem_social_psych,
#' var_stem = "belong_belong",
#' group = "\\d",
#' group_type = "pattern",
#' group_name = "wave",
#' na_removal = "pairwise",
#' pivot = "wider",
#' only = "count")
#'
#' tas_recoded <-
#' tas |>
#' dplyr::mutate(sex = dplyr::case_when(
#' sex == 1 ~ "female",
#' sex == 2 ~ "male",
#' TRUE ~ NA)) |>
#' dplyr::mutate(dplyr::across(
#' .cols = dplyr::starts_with("involved_"),
#' .fns = ~ dplyr::case_when(
#' .x == 1 ~ "selected",
#' .x == 0 ~ "unselected",
#' TRUE ~ NA)
#' ))
#'
#' select_group_tbl(data = tas_recoded,
#' var_stem = "involved_",
#' group = "sex",
#' group_type = "variable",
#' na_removal = "pairwise",
#' pivot = "wider")
#'
#' depressive_recoded <-
#' depressive |>
#' dplyr::mutate(sex = dplyr::case_when(
#' sex == 1 ~ "male",
#' sex == 2 ~ "female",
#' TRUE ~ NA)) |>
#' dplyr::mutate(dplyr::across(
#' .cols = dplyr::starts_with("dep_"),
#' .fns = ~ dplyr::case_when(
#' .x == 1 ~ "often",
#' .x == 2 ~ "sometimes",
#' .x == 3 ~ "hardly",
#' TRUE ~ NA
#' )
#' ))
#'
#' select_group_tbl(data = depressive_recoded,
#' var_stem = "dep",
#' group = "sex",
#' group_type = "variable",
#' na_removal = "listwise",
#' pivot = "wider",
#' only = "percent",
#' var_labels =
#' c("dep_1" = "how often child feels sad and blue",
#' "dep_2" = "how often child feels nervous, tense, or on edge",
#' "dep_3" = "how often child feels happy",
#' "dep_4" = "how often child feels bored",
#' "dep_5" = "how often child feels lonely",
#' "dep_6" = "how often child feels tired or worn out",
#' "dep_7" = "how often child feels excited about something",
#' "dep_8" = "how often child feels too busy to get everything"))
#'
#' @export
select_group_tbl <- function(data,
var_stem,
group,
var_input = "stem",
regex_stem = FALSE,
ignore_stem_case = FALSE,
group_type = "variable",
group_name = NULL,
margins = "all",
regex_group = FALSE,
ignore_group_case = FALSE,
remove_group_non_alnum = TRUE,
na_removal = "listwise",
pivot = "longer",
only = NULL,
var_labels = NULL,
ignore = NULL,
force_pivot = FALSE) {
set_call()
on.exit({ .summarytabl$env <- NULL }, add = TRUE)
args <- list(
data = data,
table_type = "select",
group_func = TRUE,
var_stem = var_stem,
var_label = "var_stem",
var_input = var_input,
valid_var_type = "valid_var_types",
regex_stem = regex_stem,
ignore_stem_case = ignore_stem_case,
group_var = group,
group_type = group_type,
valid_grp_type = "valid_grp_types",
group_name = group_name,
margins = margins,
regex_group = regex_group,
ignore_group_case = ignore_group_case,
remove_group_non_alnum = remove_group_non_alnum,
na_removal = na_removal,
pivot = pivot,
only = only,
var_labels = var_labels,
ignore = ignore,
force_pivot = force_pivot
)
checks <- check_select_group_args(args)
check_stems <- checks$var_stem
check_cols <- checks$cols
check_col_labels <- checks$col_labels
check_group_var <- if (checks$group_type == "variable") checks$group_var else NULL
check_group_name <- checks$group_name
check_group_type <- checks$group_type
check_stem_map <- checks$var_stem_map
check_ignore <- checks$ignore
check_na_removal <- checks$na_removal
check_pivot <- checks$pivot
check_only <- checks$only
check_force_pivot <- checks$force_pivot
check_table_type <- checks$table_type
data_sub <- checks$df[c(check_group_var, check_cols)]
ignore_result <-
extract_ignore_map(
vars = c(check_stems, check_group_var),
ignore = check_ignore,
var_stem_map = check_stem_map
)
ignore_map <- ignore_result$ignore_map
if (!is.null(ignore_map)) {
cols_to_modify <- names(ignore_map)
data_sub[cols_to_modify] <- lapply(cols_to_modify, function(col) {
replace_with_na(data_sub[[col]], ignore_map[[col]])
})
}
if (check_na_removal == "listwise") {
data_sub <- stats::na.omit(data_sub)
}
select_group_tabl <-
purrr::map(
.x = unique(check_cols),
.f = ~ generate_select_group_tabl(data_sub, .x, checks, check_group_var)
) |>
purrr::reduce(dplyr::bind_rows)
if (!is.null(check_group_name)) {
select_group_tabl <-
select_group_tabl |>
dplyr::rename(
!!rlang::sym(check_group_name) := ifelse(check_group_type == "pattern", "group", check_group_var)
)
check_group_var <- check_group_name
}
if (check_pivot == "wider" &&
override_pivot(
tabl = select_group_tabl,
var_col = "variable",
values_col = "values",
allow_override = check_force_pivot)) {
id_cols <-
if (check_group_type == "pattern") {
c("variable", check_group_var)
} else {
c("variable", "values")
}
names_from <-
if (check_group_type == "pattern") {
"values"
} else {
check_group_var
}
names_glue <-
if (check_group_type == "pattern") {
paste0("{.value}_value_{values}")
} else {
paste0("{.value}_", check_group_var, "_{", check_group_var, "}")
}
select_group_tabl <-
pivot_tbl_wider(
data = select_group_tabl,
id_cols = id_cols,
names_from = names_from,
names_glue = names_glue,
values_from = c("count", "percent")
)
}
if (!is.null(check_col_labels)) {
select_group_tabl <-
select_group_tabl |>
dplyr::mutate(variable_label = dplyr::case_match(
variable,
!!!generate_tbl_key(
values_from = names(check_col_labels),
values_to = unname(check_col_labels)),
.default = variable
)) |>
dplyr::relocate(variable_label, .after = variable)
}
select_group_tabl <-
drop_only_cols(
data = select_group_tabl,
only = check_only,
only_type = only_type(check_table_type)
)
return(tibble::as_tibble(select_group_tabl))
}
#' @keywords internal
generate_select_group_tabl <- function(data,
variable,
checks,
group_var) {
sub_dat <- data[c(variable, group_var)]
if (checks$group_type == "pattern") {
group_pattern <-
extract_group_flags(
cols = variable,
pattern = checks$group_var,
perl = checks$regex_group,
ignore.case = checks$ignore_group_case,
remove_non_alum = checks$remove_group_non_alnum
)
sub_dat <- sub_dat |> dplyr::mutate(group = group_pattern)
group_var <- "group"
}
temp_data <-
sub_dat |>
dplyr::select(dplyr::all_of(c(variable, group_var))) |>
dplyr::filter(
if (checks$na_removal == "pairwise") {
!is.na(.data[[variable]]) & !is.na(.data[[group_var]])
} else {
TRUE
})
if (checks$group_type == "variable") {
temp_data <-
summarize_select_group(
data = temp_data,
var_col = variable,
group_col = group_var,
margins = checks$margins
)
} else {
temp_data <-
temp_data |>
dplyr::group_by(.data[[group_var]], .data[[variable]]) |>
dplyr::summarize(count = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(percent = count / sum(count)) |>
dplyr::arrange(.data[[group_var]], .data[[variable]]) |>
dplyr::mutate(variable = variable) |>
dplyr::rename(values = !!rlang::sym(variable)) |>
dplyr::relocate(variable) |>
dplyr::arrange(variable)
}
return(temp_data)
}
#'
#' @keywords internal
summarize_select_group <- function(data, var_col, group_col, margins) {
margin_col <- if (margins == "rows") var_col else group_col
grouped_data <-
data |>
dplyr::group_by(.data[[group_col]], .data[[var_col]]) |>
dplyr::summarize(count = dplyr::n()) |>
dplyr::ungroup()
if (margins %in% c("rows", "columns")) {
grouped_data <-
grouped_data |>
dplyr::group_by(.data[[margin_col]]) |>
dplyr::mutate(percent = count / sum(count)) |>
dplyr::ungroup() |>
dplyr::arrange(.data[[margin_col]])
} else {
total <- sum(grouped_data$count)
grouped_data <-
grouped_data |>
dplyr::mutate(percent = count / total) |>
dplyr::arrange(.data[[group_col]], .data[[var_col]])
}
grouped_data |>
dplyr::mutate(variable = var_col) |>
dplyr::rename(values = !!rlang::sym(var_col)) |>
dplyr::relocate(variable) |>
dplyr::arrange(variable)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.