Nothing
#' @title Summarize multiple response variables
#'
#' @description `select_tbl()` displays frequency counts and percentages
#' for multiple response variables (e.g., a series of questions where
#' participants answer "Yes" or "No" to each item) as well as ordinal
#' variables (such as Likert or Likert-type items with responses ranging
#' from "Strongly Disagree" to "Strongly Agree", where respondents select
#' one response per statement, question, or item).
#'
#' @param data A data frame.
#' @param var_stem A character vector with one or more elements, where each
#' represents either a variable stem or the complete name of a variable present
#' in `data`. A variable 'stem' refers to a common naming pattern shared among
#' related variables, typically reflecting repeated measures of the same idea
#' or a group of items assessing a single concept.
#' @param var_input A character string specifying whether the values
#' supplied to `var_stem` should be treated as variable stems (`stem`) or
#' as complete variable names (`name`). By default, this is set to `stem`,
#' so the function searches for variables that begin with each stem provided.
#' Setting this argument to `name` directs the function to look for variables
#' that exactly match the provided names.
#' @param regex_stem A logical value indicating whether to use Perl-compatible
#' regular expressions when searching for variable stems. Default is `FALSE`.
#' @param ignore_stem_case A logical value indicating whether the search for
#' columns matching the supplied `var_stem` is case-insensitive. Default is
#' `FALSE`.
#' @param na_removal A character string that specifies the method for handling
#' missing values: `pairwise` or `listwise`. Defaults to `listwise`.
#' @param pivot A character string that determines the format of the table. By
#' default, `longer` returns the data in the long format. To receive the data in
#' the `wide` format, specify `wider`.
#' @param only A character string or vector of character strings of the types of
#' summary data to return. Default is `NULL`, which returns both counts and
#' percentages. To return only counts or percentages, use `count` or `percent`,
#' respectively.
#' @param var_labels An optional named character vector or list used to assign
#' custom labels to variable names. Each element must be named and correspond
#' to a variable included in the returned table. If `var_input` is set to `stem`,
#' and any element is either unnamed or refers to a variable not present in the
#' table, all labels will be ignored and the table will be printed without them.
#' @param ignore An optional named vector or list indicating values to exclude
#' from variables matching specified stems (or names). Defaults to `NULL`,
#' indicating that all values are retained. To specify exclusions for variables
#' identified by `var_stem`, use the corresponding stems or variable names as
#' names in the vector or list. To exclude multiple values from these variables,
#' supply them as a named list.
#' @param force_pivot A logical value that enables pivoting to the 'wider'
#' format even when variables have inconsistent value sets. By default, this is
#' set to `FALSE` to prevent reshaping errors when values differ across variables
#' in the returned table. Set to `TRUE` to override this safeguard and pivot to
#' the 'wider' format regardless of value inconsistencies.
#'
#' @returns A tibble displaying the count and percentage for each category in a
#' multi-response variable.
#'
#' @author Ama Nyame-Mensah
#'
#' @examples
#' select_tbl(data = tas,
#' var_stem = "involved_",
#' na_removal = "pairwise")
#'
#' select_tbl(data = depressive,
#' var_stem = "dep",
#' na_removal = "listwise",
#' pivot = "wider",
#' only = "percent")
#'
#' var_label_example <-
#' c("dep_1" = "how often child feels sad and blue",
#' "dep_2" = "how often child feels nervous, tense, or on edge",
#' "dep_3" = "how often child feels happy",
#' "dep_4" = "how often child feels bored",
#' "dep_5" = "how often child feels lonely",
#' "dep_6" = "how often child feels tired or worn out",
#' "dep_7" = "how often child feels excited about something",
#' "dep_8" = "how often child feels too busy to get everything")
#'
#' select_tbl(data = depressive,
#' var_stem = "dep",
#' na_removal = "pairwise",
#' pivot = "longer",
#' var_labels = var_label_example)
#'
#' select_tbl(data = depressive,
#' var_stem = "dep",
#' na_removal = "pairwise",
#' pivot = "wider",
#' only = "count",
#' var_labels = var_label_example)
#'
#' @export
select_tbl <- function(data,
var_stem,
var_input = "stem",
regex_stem = FALSE,
ignore_stem_case = FALSE,
na_removal = "listwise",
pivot = "longer",
only = NULL,
var_labels = NULL,
ignore = NULL,
force_pivot = FALSE) {
set_call()
on.exit({ .summarytabl$env <- NULL }, add = TRUE)
args <- list(
data = data,
table_type = "select",
group_func = FALSE,
var_stem = var_stem,
var_label = "var_stem",
var_input = var_input,
valid_var_type = "valid_var_types",
regex_stem = regex_stem,
ignore_stem_case = ignore_stem_case,
na_removal = na_removal,
pivot = pivot,
only = only,
var_labels = var_labels,
ignore = ignore,
force_pivot = force_pivot
)
checks <- check_select_args(args)
check_stems <- checks$var_stem
check_cols <- checks$cols
check_col_labels <- checks$col_labels
check_stem_map <- checks$var_stem_map
check_ignore <- checks$ignore
check_na_removal <- checks$na_removal
check_pivot <- checks$pivot
check_only <- checks$only
check_force_pivot <- checks$force_pivot
check_table_type <- checks$table_type
data_sub <- checks$df[check_cols]
ignore_result <-
extract_ignore_map(
vars = check_stems,
ignore = check_ignore,
var_stem_map = check_stem_map
)
ignore_map <- ignore_result$ignore_map
if (!is.null(ignore_map)) {
cols_to_modify <- names(ignore_map)
data_sub[cols_to_modify] <- lapply(cols_to_modify, function(col) {
replace_with_na(data_sub[[col]], ignore_map[[col]])
})
}
if (check_na_removal == "listwise") {
data_sub <- stats::na.omit(data_sub)
}
select_tabl <-
purrr::map(check_cols, ~ generate_select_tabl(data_sub, .x, check_na_removal)) |>
purrr::reduce(dplyr::bind_rows)
if (check_pivot == "wider" &&
override_pivot(
tabl = select_tabl,
var_col = "variable",
values_col = "values",
allow_override = check_force_pivot)) {
select_tabl <-
pivot_tbl_wider(
data = select_tabl,
id_cols = "variable",
names_from = "values",
names_glue = paste0("{.value}_value_{values}"),
values_from = c("count", "percent")
)
}
if (!is.null(check_col_labels)) {
select_tabl <-
select_tabl |>
dplyr::mutate(variable_label = dplyr::case_match(
variable,
!!!generate_tbl_key(
values_from = names(check_col_labels),
values_to = unname(check_col_labels)),
.default = variable
)) |>
dplyr::relocate(variable_label, .after = variable)
}
select_tabl <-
drop_only_cols(
data = select_tabl,
only = check_only,
only_type = only_type(check_table_type)
)
return(tibble::as_tibble(select_tabl))
}
#' @keywords internal
generate_select_tabl <- function(data, col, na_removal) {
data |>
dplyr::group_by(.data[[col]]) |>
dplyr::summarize(count = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::filter(if (na_removal == "pairwise") !is.na(.data[[col]]) else TRUE) |>
dplyr::mutate(
variable = col,
percent = count / sum(count)
) |>
dplyr::rename(values = 1) |>
dplyr::select(variable, values, count, percent)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.