Description Details Author(s) References See Also Examples
The package sybil is a collection of functions designed for in silico analysis—in particular constrained based analysis—of metabolic networks.
The package sybil is designed to read metabolic networks from csv files.
This is done by the function readTSVmod
. The function returns
an object of the class modelorg
.
Read csv files (example files included):
1 2 3 4 | mpath <- system.file(package = "sybil", "extdata")
model <- readTSVmod(prefix = "Ec_core",
fpath = mpath, quote = "\"")
|
Perform flux balance analysis (FBA):
ec_f <- optimizeProb(model)
Perform single gene deletion analysis:
ec_g <- oneGeneDel(model)
Plot the values of the objective function after optimization in a
histogram:
plot(ec_g)
Perform flux variability analysis:
ec_v <- fluxVar(model)
Plot the result:
plot(ec_v)
Gabriel Gelius-Dietrich <geliudie@uni-duesseldorf.de>
Maintainer: Mayo Roettger <mayo.roettger@hhu.de>
Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., and Lercher, M. J. (2013). sybil – Efficient constraint-based modelling in R. BMC Systems Biology 7, 125.
The BiGG database http://bigg.ucsd.edu/.
Schellenberger, J., Park, J. O., Conrad, T. C., and Palsson, B. Ø., (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11, 213.
The openCOBRA project https://opencobra.github.io/.
Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. Ø. and Herrgard, M. J. (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2, 727–738.
Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R. and Palsson, B. Ø. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290–1307.
Package sybilSBML and there the function readSBMLmod
to read
metabolic models written in SBML language.
1 2 3 | data(Ec_core)
Ec_ofd <- oneGeneDel(Ec_core)
plot(Ec_ofd)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.