Nothing
#' Template: Confidence Interval Plot
#'
#' Creates a valid expression to generate a [ggplot2::ggplot()] confidence interval plot.
#'
#' @inheritParams template_arguments
#' @param x_var (`character`)\cr name of the treatment variable to put on the x-axis.
#' @param y_var (`character`)\cr name of the response variable to put on the y-axis.
#' @param grp_var (`character`)\cr name of the group variable used to determine the plot colors, point shapes,
#' and line types.
#' @param stat (`character`)\cr statistic to plot. Options are `"mean"` and `"median"`.
#' @param unit_var (`character`)\cr name of the unit variable.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_g_ci()]
#'
#' @keywords internal
template_g_ci <- function(dataname,
x_var,
y_var,
grp_var = NULL,
stat = c("mean", "median"),
conf_level = 0.95,
unit_var = "AVALU",
ggplot2_args = teal.widgets::ggplot2_args()) {
stat <- match.arg(stat)
graph_list <- list()
graph_list <- if (is.null(grp_var)) {
add_expr(
expr_ls = graph_list,
new_expr = {
substitute(
expr = ggplot2::ggplot(
data = ANL,
mapping = ggplot2::aes(
x = x_var,
y = y_var
)
),
env = list(
x_var = as.name(x_var),
y_var = as.name(y_var)
)
)
}
)
} else {
add_expr(
expr_ls = graph_list,
new_expr = {
substitute(
expr = ggplot2::ggplot(
data = ANL,
mapping = ggplot2::aes(
x = x_var,
y = y_var,
color = grp_var,
lty = grp_var,
shape = grp_var
)
),
env = list(
x_var = as.name(x_var),
y_var = as.name(y_var),
grp_var = as.name(grp_var)
)
)
}
)
}
graph_list <- if (conf_level == 0.95) {
add_expr(
expr_ls = graph_list,
new_expr = substitute(
expr = ggplot2::stat_summary(
fun.data = fun,
geom = "errorbar",
width = .1,
position = ggplot2::position_dodge(width = .5)
),
env = list(
fun = switch(stat,
mean = substitute(stat_mean_ci),
median = substitute(stat_median_ci)
)
)
)
)
} else {
add_expr(
expr_ls = graph_list,
new_expr = substitute(
expr = ggplot2::stat_summary(
fun.data = fun,
geom = "errorbar",
width = .1,
position = ggplot2::position_dodge(width = .5)
),
env = list(
fun = switch(stat,
mean = substitute(
expr = function(x) stat_mean_ci(x, conf_level = conf_level),
env = list(conf_level = conf_level)
),
median = substitute(
expr = function(x) stat_median_ci(x, conf_level = conf_level),
env = list(conf_level = conf_level)
)
)
)
)
)
}
graph_list <- add_expr(
expr_ls = graph_list,
new_expr = substitute(
expr = ggplot2::stat_summary(
fun = fun,
geom = "point",
position = ggplot2::position_dodge(width = .5)
),
env = list(
fun = switch(stat,
mean = quote(mean),
median = quote(median)
)
)
)
)
parsed_ggplot2_args <- teal.widgets::parse_ggplot2_args(
teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args,
module_plot = teal.widgets::ggplot2_args(
labs = list(
title = "Confidence Interval Plot by Treatment Group",
caption = sprintf(
"%s and %i%% CIs for %s are displayed.",
switch(stat,
mean = "Mean",
median = "Median"
),
100 * conf_level,
stat
),
x = "Treatment Group",
y = "Value",
color = "",
lty = "",
shape = ""
),
theme = list()
)
)
)
graph_list <- add_expr(
expr_ls = graph_list,
new_expr = parsed_ggplot2_args$labs
)
if (!is.null(parsed_ggplot2_args$theme)) {
graph_list <- add_expr(
expr_ls = graph_list,
new_expr = parsed_ggplot2_args$theme
)
}
substitute(
expr = {
plot <- graph_expr
},
env = list(graph_expr = pipe_expr(graph_list, pipe_str = "+"))
)
}
#' teal Module: Confidence Interval Plot
#'
#' This module produces a [ggplot2::ggplot()] type confidence interval plot consistent with the TLG Catalog template
#' `CIG01` available [here](https://insightsengineering.github.io/tlg-catalog/stable/graphs/other/cig01.html).
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_g_ci
#' @param color (`data_extract_spec`)\cr the group variable used to determine the plot colors, shapes, and line types.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`ggplot`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_ci(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied only to `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(nestcolor)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADLB <- tmc_ex_adlb
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADLB <- data[["ADLB"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_ci(
#' label = "Confidence Interval Plot",
#' x_var = data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' choices = c("ARMCD", "BMRKR2"),
#' selected = c("ARMCD"),
#' multiple = FALSE,
#' fixed = FALSE
#' )
#' ),
#' y_var = data_extract_spec(
#' dataname = "ADLB",
#' filter = list(
#' filter_spec(
#' vars = "PARAMCD",
#' choices = levels(ADLB$PARAMCD),
#' selected = levels(ADLB$PARAMCD)[1],
#' multiple = FALSE,
#' label = "Select lab:"
#' ),
#' filter_spec(
#' vars = "AVISIT",
#' choices = levels(ADLB$AVISIT),
#' selected = levels(ADLB$AVISIT)[1],
#' multiple = FALSE,
#' label = "Select visit:"
#' )
#' ),
#' select = select_spec(
#' label = "Analyzed Value",
#' choices = c("AVAL", "CHG"),
#' selected = "AVAL",
#' multiple = FALSE,
#' fixed = FALSE
#' )
#' ),
#' color = data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' label = "Color by variable",
#' choices = c("SEX", "STRATA1", "STRATA2"),
#' selected = c("STRATA1"),
#' multiple = FALSE,
#' fixed = FALSE
#' )
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_g_ci <- function(label,
x_var,
y_var,
color,
stat = c("mean", "median"),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
plot_height = c(700L, 200L, 2000L),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_g_ci")
checkmate::assert_string(label)
stat <- match.arg(stat)
checkmate::assert_class(y_var, classes = "data_extract_spec")
checkmate::assert_class(x_var, classes = "data_extract_spec")
checkmate::assert_class(color, classes = "data_extract_spec")
x_var <- teal.transform::list_extract_spec(x_var, allow_null = TRUE)
y_var <- teal.transform::list_extract_spec(y_var, allow_null = TRUE)
color <- teal.transform::list_extract_spec(color, allow_null = TRUE)
teal.transform::check_no_multiple_selection(x_var)
teal.transform::check_no_multiple_selection(y_var)
teal.transform::check_no_multiple_selection(color)
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(ggplot2_args, "ggplot2_args")
assert_decorators(decorators, "plot")
args <- as.list(environment())
data_extract_list <- list(x_var = x_var, y_var = y_var, color = color)
module(
label = label,
server = srv_g_ci,
server_args = list(
x_var = x_var,
y_var = y_var,
color = color,
label = label,
plot_height = plot_height,
plot_width = plot_width,
ggplot2_args = ggplot2_args,
decorators = decorators
),
transformators = transformators,
ui = ui_g_ci,
ui_args = args,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_g_ci <- function(id, ...) {
ns <- NS(id)
args <- list(...)
teal.widgets::standard_layout(
output = teal.widgets::plot_with_settings_ui(id = ns("myplot")),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(args[c("x_var", "y_var", "color")]),
teal.transform::data_extract_ui(
id = ns("x_var"),
label = "Treatment (x axis)",
data_extract_spec = args$x_var
),
teal.transform::data_extract_ui(
id = ns("y_var"),
label = "Analysis Value (y axis)",
data_extract_spec = args$y_var
),
teal.transform::data_extract_ui(
id = ns("color"),
label = "Groups (color)",
data_extract_spec = args$color
),
teal.widgets::optionalSelectInput(
inputId = ns("conf_level"),
label = "Confidence Level",
choices = args$conf_level$choices,
selected = args$conf_level$selected,
multiple = FALSE,
fixed = args$conf_level$fixed
),
radioButtons(
inputId = ns("stat"),
label = "Statistic to use",
choices = c("mean", "median"),
selected = args$stat
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(args$decorators, "plot"))
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), "Show R code")
),
pre_output = args$pre_output,
post_output = args$post_output
)
}
#' @keywords internal
srv_g_ci <- function(id,
data,
reporter,
filter_panel_api,
x_var,
y_var,
color,
label,
plot_height,
plot_width,
ggplot2_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(x_var = x_var, y_var = y_var, color = color),
datasets = data,
select_validation_rule = list(
x_var = shinyvalidate::sv_required("Select a treatment (x axis)"),
y_var = shinyvalidate::sv_required("Select an analysis value (y axis)")
),
filter_validation_rule = list(
y_var = shinyvalidate::sv_required(message = "Please select the filters.")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level"))
iv$add_rule(
"conf_level",
shinyvalidate::sv_between(0, 1, message_fmt = "Please choose a confidence level between 0 and 1")
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
join_keys = teal.data::join_keys(data),
selector_list = selector_list
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr))
})
all_q <- reactive({
teal::validate_inputs(iv_r())
teal::validate_has_data(anl_q()[["ANL"]], min_nrow = 2)
x <- anl_inputs()$columns_source$x_var
y <- anl_inputs()$columns_source$y_var
color <- anl_inputs()$columns_source$color
validate(
need(
!all(is.na(anl_q()[["ANL"]][[y]])),
"No valid data. Please check the filtering option for analysis value (y axis)"
)
)
x_label <- column_annotation_label(data()[[attr(x, "dataname")]], x)
y_label <- column_annotation_label(data()[[attr(y, "dataname")]], y)
color_label <- if (length(color)) {
column_annotation_label(data()[[attr(color, "dataname")]], color)
} else {
NULL
}
ggplot2_args$labs$title <- paste("Confidence Interval Plot by", x_label)
ggplot2_args$labs$x <- x_label
ggplot2_args$labs$subtitle <- paste("Visit:", anl_inputs()$filter_info$y_var[[2]]$selected[[1]])
ggplot2_args$labs$y <- paste(
anl_inputs()$filter_info$y_var[[1]]$selected[[1]],
y_label
)
ggplot2_args$labs$color <- color_label
ggplot2_args$labs$lty <- color_label
ggplot2_args$labs$shape <- color_label
list_calls <- template_g_ci(
dataname = "ANL",
x_var = x,
y_var = y,
grp_var = if (length(color) == 0) {
NULL
} else {
color
},
stat = input$stat,
conf_level = as.numeric(input$conf_level),
ggplot2_args = ggplot2_args
)
teal.code::eval_code(anl_q(), list_calls)
})
decorated_plot_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "plot"),
expr = print(plot)
)
# Outputs to render.
plot_r <- reactive(decorated_plot_q()[["plot"]])
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_plot_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "CI Plot",
label = label,
description = "Confidence Interval Plot",
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.