Nothing
#' Template: Shift by Arm
#'
#' Creates a valid expression to generate a summary table of analysis indicator levels by arm.
#'
#' @inheritParams template_arguments
#' @param aval_var (`character`)\cr name of the analysis reference range indicator variable.
#' @param baseline_var (`character`)\cr name of the baseline reference range indicator variable.
#' @param add_total (`logical`)\cr whether to include row with total number of patients.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_shift_by_arm()]
#'
#' @keywords internal
template_shift_by_arm <- function(dataname,
parentname,
arm_var = "ARM",
paramcd = "PARAMCD",
visit_var = "AVISIT",
treatment_flag_var = "ONTRTFL",
treatment_flag = "Y",
aval_var = "ANRIND",
base_var = lifecycle::deprecated(),
baseline_var = "BNRIND",
na.rm = FALSE, # nolint: object_name.
na_level = default_na_str(),
add_total = FALSE,
total_label = default_total_label(),
basic_table_args = teal.widgets::basic_table_args()) {
if (lifecycle::is_present(base_var)) {
baseline_var <- base_var
warning(
"The `base_var` argument of `template_shift_by_arm()` is deprecated as of teal.modules.clinical 0.8.16. ",
"Please use the `baseline_var` argument instead.",
call. = FALSE
)
}
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::assert_string(visit_var)
checkmate::assert_string(paramcd, na.ok = TRUE)
checkmate::assert_string(aval_var)
checkmate::assert_string(baseline_var)
checkmate::assert_flag(na.rm)
checkmate::assert_string(na_level)
checkmate::assert_string(treatment_flag_var)
checkmate::assert_string(treatment_flag)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
y <- list()
# Start data steps.
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = parentname <- df_explicit_na(parentname, na_level = na_str),
env = list(parentname = as.name(parentname), na_str = na_level)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = dataname <- df_explicit_na(dataname, na_level = na_str) %>%
dplyr::filter(treatment_flag_var == treatment_flag),
env = list(
dataname = as.name(dataname),
na_str = na_level,
treatment_flag_var = as.name(treatment_flag_var),
treatment_flag = treatment_flag
)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = attr(dataname$baseline_var, "label") <- "Baseline Assessment",
env = list(dataname = as.name(dataname), baseline_var = baseline_var)
)
)
y$data <- bracket_expr(data_list)
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args
)
)
# Start layout steps.
layout_list <- list()
if (add_total) {
layout_list <- add_expr(
layout_list,
substitute(
expr = expr_basic_table_args %>%
rtables::split_cols_by(visit_var, split_fun = drop_split_levels) %>% # temp solution for over arching column
rtables::split_cols_by(aval_var) %>%
rtables::split_rows_by(
arm_var,
split_fun = add_overall_level(total_label, first = FALSE),
label_pos = "topleft",
split_label = obj_label(dataname$arm_var)
) %>%
add_rowcounts() %>%
analyze_vars(
baseline_var,
denom = "N_row",
na_str = na_str,
na.rm = na.rm,
.stats = "count_fraction"
) %>%
append_varlabels(dataname, baseline_var, indent = 1L),
env = list(
aval_var = aval_var,
arm_var = arm_var,
baseline_var = baseline_var,
dataname = as.name(dataname),
visit_var = visit_var,
na.rm = na.rm,
na_str = na_level,
total_label = total_label,
expr_basic_table_args = parsed_basic_table_args
)
)
)
} else {
layout_list <- add_expr(
layout_list,
substitute(
expr = expr_basic_table_args %>%
rtables::split_cols_by(visit_var, split_fun = drop_split_levels) %>% # temp solution for over arching column
rtables::split_cols_by(aval_var) %>%
rtables::split_rows_by(
arm_var,
split_fun = drop_split_levels,
label_pos = "topleft",
split_label = obj_label(dataname$arm_var)
) %>%
add_rowcounts() %>%
analyze_vars(
baseline_var,
denom = "N_row",
na_str = na_str,
na.rm = na.rm,
.stats = "count_fraction"
) %>%
append_varlabels(dataname, baseline_var, indent = 1L),
env = list(
aval_var = aval_var,
arm_var = arm_var,
baseline_var = baseline_var,
dataname = as.name(dataname),
visit_var = visit_var,
na.rm = na.rm,
na_str = na_level,
expr_basic_table_args = parsed_basic_table_args
)
)
)
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
# Full table.
y$table <- substitute(
expr = {
table <- rtables::build_table(lyt = lyt, df = dataname)
},
env = list(dataname = as.name(dataname))
)
y
}
#' teal Module: Shift by Arm
#'
#' This module produces a summary table of analysis indicator levels by arm.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_shift_by_arm
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_shift_by_arm(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADEG <- tmc_ex_adeg
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADEG <- data[["ADEG"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_shift_by_arm(
#' label = "Shift by Arm Table",
#' dataname = "ADEG",
#' arm_var = choices_selected(
#' variable_choices(ADSL, subset = c("ARM", "ARMCD")),
#' selected = "ARM"
#' ),
#' paramcd = choices_selected(
#' value_choices(ADEG, "PARAMCD"),
#' selected = "HR"
#' ),
#' visit_var = choices_selected(
#' value_choices(ADEG, "AVISIT"),
#' selected = "POST-BASELINE MINIMUM"
#' ),
#' aval_var = choices_selected(
#' variable_choices(ADEG, subset = "ANRIND"),
#' selected = "ANRIND",
#' fixed = TRUE
#' ),
#' baseline_var = choices_selected(
#' variable_choices(ADEG, subset = "BNRIND"),
#' selected = "BNRIND",
#' fixed = TRUE
#' ),
#' useNA = "ifany"
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_shift_by_arm <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
paramcd,
visit_var,
aval_var,
base_var = lifecycle::deprecated(),
baseline_var,
treatment_flag_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, subset = "ONTRTFL"),
selected = "ONTRTFL"
),
treatment_flag = teal.transform::choices_selected("Y"),
useNA = c("ifany", "no"), # nolint: object_name.
na_level = default_na_str(),
add_total = FALSE,
total_label = default_total_label(),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
if (lifecycle::is_present(base_var)) {
baseline_var <- base_var
warning(
"The `base_var` argument of `tm_t_shift_by_arm()` is deprecated as of teal.modules.clinical 0.8.16. ",
"Please use the `baseline_var` argument instead.",
call. = FALSE
)
} else {
base_var <- baseline_var # resolves missing argument error
}
message("Initializing tm_t_shift_by_arm")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
useNA <- match.arg(useNA) # nolint: object_name.
checkmate::assert_string(na_level)
checkmate::assert_string(total_label)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(visit_var, "choices_selected")
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(baseline_var, "choices_selected")
checkmate::assert_class(treatment_flag_var, "choices_selected")
checkmate::assert_class(treatment_flag, "choices_selected")
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname),
visit_var = cs_to_des_filter(visit_var, dataname = dataname),
treatment_flag_var = cs_to_des_select(treatment_flag_var, dataname = dataname),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
baseline_var = cs_to_des_select(baseline_var, dataname = dataname)
)
module(
label = label,
server = srv_shift_by_arm,
ui = ui_shift_by_arm,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
label = label,
total_label = total_label,
na_level = na_level,
treatment_flag = treatment_flag,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_shift_by_arm <- function(id, ...) {
ns <- NS(id)
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$id_var,
a$arm_var,
a$paramcd,
a$visit_var,
a$treatment_flag_var,
a$treatment_flag,
a$aval_var,
a$baseline_var
)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c(
"arm_var", "paramcd_var", "paramcd", "aval_var", "baseline_var", "visit_var", "treamtment_flag_var"
)]),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Endpoint",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("visit_var"),
label = "Select Visit",
data_extract_spec = a$visit_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Select Analysis Range Indicator Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("baseline_var"),
label = "Select Baseline Reference Range Indicator Variable",
data_extract_spec = a$baseline_var,
is_single_dataset = is_single_dataset_value
),
checkboxInput(ns("add_total"), "Add All Patients row", value = a$add_total),
radioButtons(
ns("useNA"),
label = "Display NA counts",
choices = c("ifany", "no"),
selected = a$useNA
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional Variables Info",
teal.transform::data_extract_ui(
id = ns("treatment_flag_var"),
label = "On Treatment Flag Variable",
data_extract_spec = a$treatment_flag_var,
is_single_dataset = is_single_dataset_value
),
teal.widgets::optionalSelectInput(
ns("treatment_flag"),
label = "Value Indicating On Treatment",
multiple = FALSE,
fixed_on_single = TRUE
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_shift_by_arm <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
paramcd,
visit_var,
treatment_flag_var,
treatment_flag,
aval_var,
baseline_var,
label,
na_level,
add_total,
total_label,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
paramcd = paramcd,
visit_var = visit_var,
aval_var = aval_var,
baseline_var = baseline_var,
treatment_flag_var = treatment_flag_var
),
datasets = data,
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("An analysis range indicator required"),
arm_var = shinyvalidate::sv_required("A treatment variable is required"),
treatment_flag_var = shinyvalidate::sv_required("An on treatment flag variable is required"),
baseline_var = shinyvalidate::sv_required("A baseline reference range indicator is required")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required("An endpoint is required"),
visit_var = shinyvalidate::sv_required("A visit is required")
)
)
isolate({
resolved <- teal.transform::resolve_delayed(treatment_flag, as.list(data()))
teal.widgets::updateOptionalSelectInput(
session = session,
inputId = "treatment_flag",
choices = resolved$choices,
selected = resolved$selected
)
})
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule(
"treatment_flag",
shinyvalidate::sv_required("An indicator value for on treatment records is required")
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
# Validate inputs.
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
input_arm_var <- names(merged$anl_input_r()$columns_source$arm_var)
input_aval_var <- names(merged$anl_input_r()$columns_source$aval_var)
input_baseline_var <- names(merged$anl_input_r()$columns_source$baseline_var)
input_treatment_flag_var <- names(merged$anl_input_r()$columns_source$treatment_flag_var)
validate(
need(
nrow(merged$anl_q()[["ANL"]]) > 0,
paste0(
"Please make sure the analysis dataset is not empty or\n",
"endpoint parameter and analysis visit are selected."
)
)
)
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_aval_var, input_baseline_var),
arm_var = input_arm_var
)
})
# Generate r code for the analysis.
all_q <- reactive({
validate_checks()
my_calls <- template_shift_by_arm(
dataname = "ANL",
parentname = "ANL_ADSL",
arm_var = names(merged$anl_input_r()$columns_source$arm_var),
paramcd = unlist(merged$anl_input_r()$filter)["vars_selected"],
treatment_flag_var = names(merged$anl_input_r()$columns_source$treatment_flag_var),
treatment_flag = input$treatment_flag,
aval_var = names(merged$anl_input_r()$columns_source$aval_var),
baseline_var = names(merged$anl_input_r()$columns_source$baseline_var),
na.rm = ifelse(input$useNA == "ifany", FALSE, TRUE),
na_level = na_level,
add_total = input$add_total,
total_label = total_label,
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
# Decoration of table output.
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Shift by Arm Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.