Nothing
testthat::test_that("h_glm_poisson glm-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_poisson(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = NULL)
)
mat1 <- summary(result$glm_fit)$coefficients %>% as.data.frame()
mat1$coefs <- row.names(mat1)
rownames(mat1) <- NULL
names(mat1) <- c("Estimate", "SE", "z_value", "Pr", "coefs")
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_poisson emmeans-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_count(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = NULL),
distribution = "poisson"
)
mat1 <- as.data.frame(broom::tidy(result$emmeans_fit))
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_poisson fails wrong inputs", {
testthat::expect_error(
h_glm_poisson(
.var = "wrong.var",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = NULL)
)
)
testthat::expect_error(
h_glm_poisson(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("wrong.var"))
)
)
})
testthat::test_that("h_glm_poisson glm-fit works with healthy input with covariates", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_poisson(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("REGION1"))
)
mat1 <- summary(result$glm_fit)$coefficients %>% as.data.frame()
mat1$coefs <- row.names(mat1)
rownames(mat1) <- NULL
names(mat1) <- c("Estimate", "SE", "z_value", "Pr", "coefs")
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_poisson emmeans-fit works with healthy input with covariates", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_count(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
distribution = "poisson"
)
mat1 <- as.data.frame(broom::tidy(result$emmeans_fit))
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_quasipoisson glm-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_quasipoisson(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("REGION1"))
)
mat1 <- summary(result$glm_fit)$coefficients %>% as.data.frame()
mat1$coefs <- row.names(mat1)
rownames(mat1) <- NULL
names(mat1) <- c("Estimate", "SE", "z_value", "Pr", "coefs")
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_quasipoisson emmeans-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_quasipoisson(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("REGION1"))
)
mat1 <- as.data.frame(broom::tidy(result$emmeans_fit))
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_quasipoisson fails wrong inputs", {
testthat::expect_error(
h_glm_quasipoisson(
.var = "wrong.var",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = NULL)
)
)
testthat::expect_error(
h_glm_quasipoisson(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("wrong.var"))
)
)
})
testthat::test_that("h_glm_negbin glm-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_negbin(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("REGION1"))
)
mat1 <- summary(result$glm_fit)$coefficients %>% as.data.frame()
mat1$coefs <- row.names(mat1)
rownames(mat1) <- NULL
names(mat1) <- c("Estimate", "SE", "z_value", "Pr", "coefs")
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_negbin emmeans-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_negbin(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("REGION1"))
)
mat1 <- as.data.frame(broom::tidy(result$emmeans_fit))
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_negbin fails wrong inputs", {
testthat::expect_error(
h_glm_negbin(
.var = "wrong.var",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = NULL)
)
)
testthat::expect_error(
h_glm_negbin(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("wrong.var"))
)
)
})
testthat::test_that("h_glm_count glm-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_count(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = NULL),
distribution = "poisson"
)
mat1 <- summary(result$glm_fit)$coefficients %>% as.data.frame()
mat1$coefs <- row.names(mat1)
rownames(mat1) <- NULL
names(mat1) <- c("Estimate", "SE", "z_value", "Pr", "coefs")
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_count emmeans-fit works with healthy input", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- h_glm_count(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = NULL),
distribution = "poisson"
)
mat1 <- as.data.frame(broom::tidy(result$emmeans_fit))
res <- testthat::expect_silent(mat1)
testthat::expect_snapshot(res)
})
testthat::test_that("h_glm_count fails wrong inputs", {
testthat::expect_error(
h_glm_count(
.var = "wrong.var",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = NULL)
)
)
testthat::expect_error(
h_glm_count(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = c("wrong.var"))
)
)
})
testthat::test_that("h_ppmeans works with healthy input", {
set.seed(2)
anl <- tern_ex_adtte %>%
dplyr::filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
# https://github.com/rvlenth/emmeans/issues/463
withr::with_options(
opts_partial_match_old,
{
fits <- h_glm_count(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
distribution = "poisson"
)
testthat::expect_snapshot(fits)
}
)
# https://github.com/rvlenth/emmeans/issues/463
withr::with_options(
opts_partial_match_old,
{
fits2 <- h_glm_count(
.var = "AVAL",
.df_row = anl,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
distribution = "quasipoisson"
)
testthat::expect_snapshot(fits2)
}
)
# XXX ppmeans fails snapshot diff in integration tests
testthat::expect_silent(
result <- h_ppmeans(
obj = fits$glm_fit,
.df_row = anl,
arm = "ARM",
conf_level = 0.95
) # diff
)
})
testthat::test_that("s_glm_count works with healthy input", {
set.seed(2)
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- s_glm_count(
df = anl %>%
filter(ARMCD == "ARM B"),
.df_row = anl,
.var = "AVAL",
.in_ref_col = TRUE,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
conf_level = 0.95,
distribution = "poisson",
rate_mean_method = "emmeans" # XXX ppmeans fails snapshot diff in integration tests
)
res <- testthat::expect_silent(result)
testthat::expect_snapshot(res) # diff
})
testthat::test_that("s_glm_count (negative binomial) works with healthy input", {
set.seed(2)
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- s_glm_count(
df = anl %>%
filter(ARMCD == "ARM B"),
.df_row = anl,
.var = "AVAL",
.in_ref_col = TRUE,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
conf_level = 0.95,
distribution = "negbin",
rate_mean_method = "emmeans" # XXX ppmeans fails snapshot diff in integration tests
)
res <- testthat::expect_silent(result)
testthat::expect_snapshot(res) # diff
})
testthat::test_that("s_glm_count works with no reference group selected.", {
set.seed(2)
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- s_glm_count(
df = anl %>%
filter(ARMCD == "ARM B"),
.df_row = anl,
.var = "AVAL",
.in_ref_col = FALSE,
.ref_group = anl %>%
filter(ARMCD == "ARM B"),
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
conf_level = 0.95,
distribution = "poisson",
rate_mean_method = "emmeans" # XXX ppmeans fails snapshot diff in integration tests
)
res <- testthat::expect_silent(result)
testthat::expect_snapshot(res) # diff
})
testthat::test_that("s_glm_count (negative binomial) works with no reference group selected.", {
set.seed(2)
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- s_glm_count(
df = anl %>%
filter(ARMCD == "ARM B"),
.df_row = anl,
.var = "AVAL",
.in_ref_col = FALSE,
.ref_group = anl %>%
filter(ARMCD == "ARM B"),
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
conf_level = 0.95,
distribution = "negbin",
rate_mean_method = "emmeans" # XXX ppmeans fails snapshot diff in integration tests
)
res <- testthat::expect_silent(result)
testthat::expect_snapshot(res) # diff
})
testthat::test_that("s_glm_count fails wrong inputs", {
testthat::expect_error(s_glm_count(
df = anl %>%
filter(ARMCD == "ARM B"),
.df_row = anl,
.var = "AVAL",
.in_ref_col = FALSE,
variables = list(arm = "ARMCD", offset = "lgTMATRSK", covariates = c("REGION1")),
conf_level = 0.95,
distribution = "quasipoisson",
rate_mean_method = "ppmeans"
))
})
testthat::test_that("summarize_glm_count works with healthy inputs", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- basic_table() %>%
split_cols_by("ARM", ref_group = "B: Placebo", split_fun = ref_group_position("first")) %>%
add_colcounts() %>%
analyze_vars(
"AVAL_f",
var_labels = "Number of exacerbations per patient",
.stats = c("count_fraction"),
.formats = c("count_fraction" = "xx (xx.xx%)"),
.labels = c("Number of exacerbations per patient")
) %>%
summarize_glm_count(
vars = "AVAL",
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = NULL),
conf_level = 0.95,
distribution = "poisson",
rate_mean_method = "emmeans",
var_labels = "Unadjusted exacerbation rate (per year)",
table_names = "unadj",
.stats = c("rate"),
.labels = c(rate = "Rate")
) %>%
build_table(anl)
res <- testthat::expect_silent(result)
testthat::expect_snapshot(res)
})
testthat::test_that("summarize_glm_count (negative binomial) works with healthy inputs", {
anl <- tern_ex_adtte %>%
filter(PARAMCD == "TNE")
anl$AVAL_f <- as.factor(anl$AVAL)
result <- basic_table() %>%
split_cols_by("ARM", ref_group = "B: Placebo", split_fun = ref_group_position("first")) %>%
add_colcounts() %>%
analyze_vars(
"AVAL_f",
var_labels = "Number of exacerbations per patient",
.stats = c("count_fraction"),
.formats = c("count_fraction" = "xx (xx.xx%)"),
.labels = c("Number of exacerbations per patient")
) %>%
summarize_glm_count(
vars = "AVAL",
variables = list(arm = "ARM", offset = "lgTMATRSK", covariates = NULL),
conf_level = 0.95,
distribution = "negbin",
rate_mean_method = "emmeans",
var_labels = "Unadjusted exacerbation rate (per year)",
table_names = "unadj",
.stats = c("rate"),
.labels = c(rate = "Rate")
) %>%
build_table(anl)
res <- testthat::expect_silent(result)
testthat::expect_snapshot(res)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.