Nothing
#' Read a dataset from a set of files
#'
#' Read files into a dataset, optionally processing them in parallel.
#'
#' @param files List of filenames or glob pattern for files (e.g. "*.csv")
#' @param reader Function that maps a file into a dataset (e.g.
#' [text_line_dataset()] or [tfrecord_dataset()]).
#' @param ... Additional arguments to pass to `reader` function
#' @param parallel_files An integer, number of files to process in parallel
#' @param parallel_interleave An integer, number of consecutive records to
#' produce from each file before cycling to another file.
#' @param num_shards An integer representing the number of shards operating in
#' parallel.
#' @param shard_index An integer, representing the worker index. Shared indexes
#' are 0 based so for e.g. 8 shards valid indexes would be 0-7.
#'
#' @return A dataset
#'
#' @export
read_files <- function(files, reader, ...,
parallel_files = 1, parallel_interleave = 1,
num_shards = NULL, shard_index = NULL) {
# files dataset to process
files_dataset <- NULL
# if files is a character vector
if (is.character(files)) {
# if it's a glob pattern then resolve it
if (length(files) == 1 && !identical(utils::glob2rx(files), files))
files_dataset <- file_list_dataset(files)
# otherwise just convert to tensor dataset
else
files_dataset <- tensor_slices_dataset(as.list(files))
# convert tensors to dataset
} else if (is_tensor(files)) {
files_dataset <- tensor_slices_dataset(files)
# already a dataset!
} else if (is_dataset(files)) {
files_dataset <- files
# no idea
} else {
stop("Invalid type (", class(files)[[1]], ") for files argument")
}
# read with appropriate parallel options
dataset <- files_dataset
# shard
if (!is.null(num_shards)) {
dataset <- dataset %>%
dataset_shard(num_shards = num_shards, index = shard_index)
}
# parallel files with interleave
dataset <- dataset %>%
dataset_interleave(cycle_length = parallel_files, block_length = parallel_interleave,
function(file) {
reader(file, ...)
})
# return
as_tf_dataset(dataset)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.