Nothing
as_integer_tensor <- function(x, dtype = tf$int64) {
# recurse over lists
if (is.list(x) || (is.numeric(x) && length(x) > 1))
lapply(x, function(elem) as_integer_tensor(elem, dtype))
else if (is.null(x))
x
else if (is_tensor(x))
tf$cast(x, dtype = dtype)
else
as.integer(x)
# https://github.com/tensorflow/tensorflow/issues/71937
# tf$constant(as.integer(x), dtype = dtype)
}
as_tensor_shapes <- function(x) {
if (is.list(x))
tuple(lapply(x, as_tensor_shapes))
else if (is_tensor(x))
tf$cast(x, dtype = tf$int64)
else if (inherits(x, "python.builtin.object"))
x
else if (is.null(x))
tf$constant(-1L, dtype = tf$int64)
else
tf$constant(as.integer(x), dtype = tf$int64)
}
with_session <- function(f, session = NULL) {
if (is.null(session)) {
if (tensorflow::tf_version() >= "1.14")
session <- tensorflow::tf$compat$v1$get_default_session()
} else {
session <- tf$get_default_session()
}
if (is.null(session)) {
if (tensorflow::tf_version() >= "1.14")
session <- tf$compat$v1$Session()
else
session <- tf$Session()
on.exit(session$close(), add = TRUE)
}
f(session)
}
validate_tf_version <- function(required_ver = "1.4", feature_name = "tfdatasets") {
tf_ver <- tensorflow::tf_version()
if (is.null(tf_ver)) {
stop("You need to install TensorFlow to use tfdatasets ",
"-- install with tensorflow::install_tensorflow()",
call. = FALSE)
} else if (tf_ver < required_ver) {
stop(
feature_name, " requires version ", required_ver, " ",
"of TensorFlow (you are currently running version ", tf_ver, ").",
call. = FALSE
)
}
}
column_names <- function(dataset) {
if (tensorflow::tf_version() >= "2.0") {
x <- next_batch(dataset)
} else {
x <- dataset$output_shapes
}
if (!is.list(x) || is.null(names(x)))
stop("Unable to resolve features for dataset that does not have named outputs", call. = FALSE)
names(x)
}
is_dataset <- function(x) {
inherits(x, "tensorflow.python.data.ops.dataset_ops.Dataset") ||
inherits(x, "tensorflow.python.data.ops.dataset_ops.DatasetV2")
}
is_tensor <- function(x) {
inherits(x, "tensorflow.python.framework.ops.Tensor")
}
is_eager_tensor <- function(x) {
inherits(x, "python.builtin.EagerTensor") ||
inherits(x, "tensorflow.python.framework.ops.EagerTensor")
}
as_py_function <- function(x) {
if (inherits(x, "python.builtin.function")) {
x
} else {
rlang::as_function(x)
}
}
as_integer_list <- function(x) as.list(as.integer(x))
# assert_all_dots_named(), capture_args(), require_tf_version()
# copy-pasted from keras circa tf_version() 2.7
require_tf_version <- function(ver, msg = "this function.") {
if (tf_version() < ver)
stop("Tensorflow version >=", ver, " required to use ", msg)
}
assert_all_dots_named <- function(envir = parent.frame(), cl) {
x <- eval(quote(list(...)), envir)
if(!length(x))
return()
x <- names(x)
if(is.character(x) && !anyNA(x) && all(x != ""))
return()
stop("All arguments provided to `...` must be named.\n",
"Call with unnamed arguments in dots:\n ",
paste(deparse(cl, 500L), collapse = "\n"))
}
# TODO: should there be some default modifiers in capture_args() for standard layer args
# like, input_shape, batch_input_shape, etc.
capture_args <- function(cl, modifiers = NULL, ignore = NULL,
envir = parent.frame(), fn = sys.function(-1)) {
## bug: match.call() resolves incorrectly if dots are from not the default sys.parent()
## e.g, this fails if dots originate from the callers caller:
# cl <- eval(quote(match.call()), parent.frame())
## workaround: caller must call match.call() from the correct frame
## note: capture_args() must always be called at the top level of the intended function body.
## sys.function(-1) resolves to the incorrect function if the capture_args()
## call is itself a promise in another call. E.g.,:
## do.call(foo, capture_args(match.call())) fails because fn resolves to do.call()
fn_arg_nms <- names(formals(fn))
known_args <- intersect(names(cl), fn_arg_nms)
known_args <- setdiff(known_args, ignore)
names(known_args) <- known_args
cl2 <- c(quote(list), lapply(known_args, as.symbol))
if("..." %in% fn_arg_nms && !"..." %in% ignore) {
assert_all_dots_named(envir, cl)
# this might reorder args by assuming ... are last, but it doesn't matter
# since everything is supplied as a keyword arg to the Python side anyway
cl2 <- c(cl2, quote(...))
}
args <- eval(as.call(cl2), envir)
for(nm in intersect(names(args), ignore))
args[[nm]] <- NULL
nms_to_modify <- intersect(names(args), names(modifiers))
for (nm in nms_to_modify)
args[nm] <- list(modifiers[[nm]](args[[nm]]))
# list() so if modifier returns NULL, don't remove the arg
args
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.