Nothing
suppressPackageStartupMessages(library(dplyr))
if (require("topicmodels", quietly = TRUE)) {
data(AssociatedPress)
ap <- AssociatedPress[1:100, ]
lda <- LDA(ap, control = list(alpha = 0.1), k = 4)
ctm <- LDA(ap, k = 4)
test_that("can tidy beta matrix", {
td <- tidy.LDA(lda, matrix = "beta")
td2 <- tidy.CTM(ctm, matrix = "beta")
expect_s3_class(td, "tbl_df")
expect_s3_class(td2, "tbl_df")
expect_equal(colnames(td), c("topic", "term", "beta"))
expect_equal(colnames(td2), c("topic", "term", "beta"))
expect_type(td$term, "character")
expect_type(td$beta, "double")
expect_equal(unique(td$topic), 1:4)
expect_type(td2$term, "character")
expect_type(td2$beta, "double")
expect_equal(unique(td2$topic), 1:4)
expect_gt(nrow(td), 10000)
expect_gt(nrow(td2), 10000)
expect_true(all(c("united", "states", "president") %in% td$term))
# all betas sum to 1
summ <- td %>%
count(topic, wt = beta)
expect_lt(max(abs(summ$n - 1)), .000001)
td_log <- tidy(lda, matrix = "beta", log = TRUE)
expect_true(all(td_log$beta < 0))
td_log2 <- tidy(ctm, matrix = "beta", log = TRUE)
expect_true(all(td_log2$beta < 0))
})
test_that("can tidy gamma matrix", {
td <- tidy.LDA(lda, matrix = "gamma")
expect_s3_class(td, "tbl_df")
td2 <- tidy.CTM(ctm, matrix = "gamma")
expect_s3_class(td2, "tbl_df")
expect_equal(colnames(td), c("document", "topic", "gamma"))
expect_equal(colnames(td2), c("document", "topic", "gamma"))
expect_type(td$document, "integer")
expect_type(td$gamma, "double")
expect_type(td2$document, "integer")
expect_type(td2$gamma, "double")
expect_equal(nrow(td), 400)
expect_equal(unique(td$topic), 1:4)
expect_equal(unique(td$document), 1:100)
expect_equal(nrow(td2), 400)
expect_equal(unique(td2$topic), 1:4)
expect_equal(unique(td2$document), 1:100)
# all gammas sum to 1
summ <- td %>%
count(document, wt = gamma)
expect_lt(max(abs(summ$n - 1)), 1e-6)
td_log <- tidy(lda, matrix = "gamma", log = TRUE)
expect_true(all(td_log$gamma < 0))
})
test_that("can augment an LDA output", {
au <- augment.LDA(lda)
expect_s3_class(au, "tbl_df")
au2 <- augment.CTM(ctm)
expect_s3_class(au2, "tbl_df")
expect_equal(colnames(au), c("document", "term", ".topic"))
expect_equal(sort(unique(au$.topic)), 1:4)
# augment output should have same document-term combinations
ap_tidied <- tidy(ap)
s <- arrange(au, document, term)
s2 <- ap_tidied %>%
arrange(document, term)
expect_equal(s$term, s2$term)
expect_equal(s$document, s2$document)
# can include extra columns
ap_tidied2 <- ap_tidied %>%
mutate(starts_a = stringr::str_detect(term, "^a"))
au2 <- augment.LDA(lda, data = ap_tidied2)
expect_equal(au$document, au2$document)
expect_equal(au$term, au2$term)
expect_type(au2$starts_a, "logical")
expect_equal(stringr::str_detect(au2$term, "^a"), au2$starts_a)
# can give document term matrix
au3 <- augment.LDA(lda, data = ap)
expect_equal(au$document, au3$document)
expect_equal(au$term, au3$term)
expect_equal(au$.topic, au3$.topic)
})
test_that("can glance an LDA output", {
g <- glance.LDA(lda)
expect_s3_class(g, "tbl_df")
expect_equal(nrow(g), 1)
expect_equal(g$terms, 19253)
g2 <- glance.CTM(lda)
expect_s3_class(g2, "tbl_df")
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.