krylow.pls | R Documentation |
Fits the PLS estimator for the additive risk model based on the least squares fitting criterion
krylow.pls(D, d, dim = 1)
D |
defined above |
d |
defined above |
dim |
number of pls dimensions |
L(\beta,D,d) = \beta^T D \beta - 2 \beta^T d
where D=\int Z H
Z dt
and d=\int Z H dN
.
returns a list with the following arguments:
beta |
PLS regression coefficients |
Thomas Scheike
Martinussen and Scheike, The Aalen additive hazards model with high-dimensional regressors, submitted.
Martinussen and Scheike, Dynamic Regression Models for Survival Data, Springer (2006).
## makes data for pbc complete case
data(mypbc)
pbc<-mypbc
pbc$time<-pbc$time+runif(418)*0.1; pbc$time<-pbc$time/365
pbc<-subset(pbc,complete.cases(pbc));
covs<-as.matrix(pbc[,-c(1:3,6)])
covs<-cbind(covs[,c(1:6,16)],log(covs[,7:15]))
## computes the matrices needed for the least squares
## criterion
out<-aalen(Surv(time,status>=1)~const(covs),pbc,robust=0,n.sim=0)
S=out$intZHZ; s=out$intZHdN;
out<-krylow.pls(S,s,dim=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.