krylow.pls: Fits Krylow based PLS for additive hazards model

Description Usage Arguments Value Author(s) References Examples

Description

Fits the PLS estimator for the additive risk model based on the least squares fitting criterion

L(β,D,d) = β^T D β - 2 β^T d

where D=\int Z H Z dt and d=\int Z H dN.

Usage

1

Arguments

D

defined above

d

defined above

dim

number of pls dimensions

Value

returns a list with the following arguments:

beta

PLS regression coefficients

Author(s)

Thomas Scheike

References

Martinussen and Scheike, The Aalen additive hazards model with high-dimensional regressors, submitted.

Martinussen and Scheike, Dynamic Regression Models for Survival Data, Springer (2006).

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
## makes data for pbc complete case
data(mypbc)
pbc<-mypbc
pbc$time<-pbc$time+runif(418)*0.1; pbc$time<-pbc$time/365
pbc<-subset(pbc,complete.cases(pbc));
covs<-as.matrix(pbc[,-c(1:3,6)])
covs<-cbind(covs[,c(1:6,16)],log(covs[,7:15]))

## computes the matrices needed for the least squares 
## criterion 
out<-aalen(Surv(time,status>=1)~const(covs),pbc,robust=0,n.sim=0)
S=out$intZHZ; s=out$intZHdN;

out<-krylow.pls(S,s,dim=2)


Search within the timereg package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.