recurrent.marginal.mean | R Documentation |
Fitting two aalen models for death and recurent events these are combined to prducte the estimator
\int_0^t S(u) dR(u)
the mean number of recurrent events, here
S(u)
is the probability of survival, and
dR(u)
is the probability of an event among survivors.
recurrent.marginal.mean(recurrent, death)
recurrent |
aalen model for recurrent events |
death |
aalen model for recurrent events |
IID versions used for Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data mets:::recurrent.marginal, these two version should give the same when there are no ties.
Thomas Scheike
Ghosh and Lin (2002) Nonparametric Analysis of Recurrent events and death, Biometrics, 554–562.
### get some data using mets simulaitons, and avoid dependency, see mets
# library(mets)
# data(base1cumhaz)
# data(base4cumhaz)
# data(drcumhaz)
# dr <- drcumhaz
# base1 <- base1cumhaz
# base4 <- base4cumhaz
# rr <- simRecurrent(100,base1,death.cumhaz=dr)
# rr$x <- rnorm(nrow(rr))
# rr$strata <- floor((rr$id-0.01)/50)
# drename(rr) <- start+stop~entry+time
#
# ar <- aalen(Surv(start,stop,status)~+1+cluster(id),data=rr,resample.iid=1
# ,max.clust=NULL)
# ad <- aalen(Surv(start,stop,death)~+1+cluster(id),data=rr,resample.iid=1,
# ,max.clust=NULL)
# mm <- recurrent.marginal.mean(ar,ad)
# with(mm,plot(times,mu,type="s"))
# with(mm,lines(times,mu+1.96*se.mu,type="s",lty=2))
# with(mm,lines(times,mu-1.96*se.mu,type="s",lty=2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.