recurrent.marginal.coxmean | R Documentation |
Fitting two Cox models for death and recurent events these are combined to prducte the estimator
\int_0^t S(u|x=0) dR(u|x=0)
the mean number of recurrent events, here
S(u|x=0)
is the probability of survival, and
dR(u|x=0)
is the probability of an event among survivors. For now the estimator is based on the two-baselines so
x=0
, but covariates can be rescaled to look at different x's and extensions possible.
recurrent.marginal.coxmean(recurrent, death)
recurrent |
aalen model for recurrent events |
death |
cox.aalen (cox) model for death events |
IID versions along the lines of Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data. IID versions used for Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data mets:::recurrent.marginal, these two version should give the same when there are now ties.
Thomas Scheike
Ghosh and Lin (2002) Nonparametric Analysis of Recurrent events and death, Biometrics, 554–562.
### do not test because iid slow and uses data from mets
library(mets)
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- drcumhaz
base1 <- base1cumhaz
base4 <- base4cumhaz
rr <- simRecurrent(100,base1,death.cumhaz=dr)
rr$x <- rnorm(nrow(rr))
rr$strata <- floor((rr$id-0.01)/50)
drename(rr) <- start+stop~entry+time
ar <- cox.aalen(Surv(start,stop,status)~+1+prop(x)+cluster(id),data=rr,
resample.iid=1,,max.clust=NULL,max.timepoint.sim=NULL)
ad <- cox.aalen(Surv(start,stop,death)~+1+prop(x)+cluster(id),data=rr,
resample.iid=1,,max.clust=NULL,max.timepoint.sim=NULL)
mm <- recurrent.marginal.coxmean(ar,ad)
with(mm,plot(times,mu,type="s"))
with(mm,lines(times,mu+1.96*se.mu,type="s",lty=2))
with(mm,lines(times,mu-1.96*se.mu,type="s",lty=2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.