View source: R/predict-timereg.r
predict.timereg | R Documentation |
Make predictions based on the survival models (Aalen and Cox-Aalen) and the competing risks models for the cumulative incidence function (comp.risk). Computes confidence intervals and confidence bands based on resampling.
## S3 method for class 'timereg'
predict(
object,
newdata = NULL,
X = NULL,
times = NULL,
Z = NULL,
n.sim = 500,
uniform = TRUE,
se = TRUE,
alpha = 0.05,
resample.iid = 0,
...
)
object |
an object belonging to one of the following classes: comprisk, aalen or cox.aalen |
newdata |
specifies the data at which the predictions are wanted. |
X |
alternative to newdata, specifies the nonparametric components for predictions. |
times |
times in which predictions are computed, default is all time-points for baseline |
Z |
alternative to newdata, specifies the parametric components of the model for predictions. |
n.sim |
number of simulations in resampling. |
uniform |
computes resampling based uniform confidence bands. |
se |
computes pointwise standard errors |
alpha |
specificies the significance levelwhich cause we consider. |
resample.iid |
set to 1 to return iid decomposition of estimates, 3-dim matrix (predictions x times x subjects) |
... |
unused arguments - for S3 compatability |
time |
vector of time points where the predictions are computed. |
unif.band |
resampling based constant to construct 95% uniform confidence bands. |
model |
specifies what model that was fitted. |
alpha |
specifies the significance level for the confidence intervals. This relates directly to the constant given in unif.band. |
newdata |
specifies the newdata given in the call. |
RR |
gives relative risk terms for Cox-type models. |
call |
gives call for predict funtion. |
initial.call |
gives call for underlying object used for predictions. |
P1 |
gives cumulative inicidence predictions for competing risks models. Predictions given in matrix form with different subjects in different rows. |
S0 |
gives survival predictions for survival models. Predictions given in matrix form with different subjects in different rows. |
se.P1 |
pointwise standard errors for predictions of P1. |
se.S0 |
pointwise standard errors for predictions of S0. |
Thomas Scheike, Jeremy Silver
Scheike, Zhang and Gerds (2008), Predicting cumulative incidence probability by direct binomial regression, Biometrika, 95, 205-220.
Scheike and Zhang (2007), Flexible competing risks regression modelling and goodness of fit, LIDA, 14, 464-483 .
Martinussen and Scheike (2006), Dynamic regression models for survival data, Springer.
data(bmt);
## competing risks
add<-comp.risk(Event(time,cause)~platelet+age+tcell,data=bmt,cause=1)
ndata<-data.frame(platelet=c(1,0,0),age=c(0,1,0),tcell=c(0,0,1))
out<-predict(add,newdata=ndata,uniform=1,n.sim=1000)
par(mfrow=c(2,2))
plot(out,multiple=0,uniform=1,col=1:3,lty=1,se=1)
# see comp.risk for further examples.
add<-comp.risk(Event(time,cause)~factor(tcell),data=bmt,cause=1)
summary(add)
out<-predict(add,newdata=ndata,uniform=1,n.sim=1000)
plot(out,multiple=1,uniform=1,col=1:3,lty=1,se=1)
add<-prop.odds.subdist(Event(time,cause)~factor(tcell),
data=bmt,cause=1)
out <- predict(add,X=1,Z=1)
plot(out,multiple=1,uniform=1,col=1:3,lty=1,se=1)
## SURVIVAL predictions aalen function
data(sTRACE)
out<-aalen(Surv(time,status==9)~sex+ diabetes+chf+vf,
data=sTRACE,max.time=7,n.sim=0,resample.iid=1)
pout<-predict(out,X=rbind(c(1,0,0,0,0),rep(1,5)))
head(pout$S0[,1:5]); head(pout$se.S0[,1:5])
par(mfrow=c(2,2))
plot(pout,multiple=1,se=0,uniform=0,col=1:2,lty=1:2)
plot(pout,multiple=0,se=1,uniform=1,col=1:2)
out<-aalen(Surv(time,status==9)~const(age)+const(sex)+
const(diabetes)+chf+vf,
data=sTRACE,max.time=7,n.sim=0,resample.iid=1)
pout<-predict(out,X=rbind(c(1,0,0),c(1,1,0)),
Z=rbind(c(55,0,1),c(60,1,1)))
head(pout$S0[,1:5]); head(pout$se.S0[,1:5])
par(mfrow=c(2,2))
plot(pout,multiple=1,se=0,uniform=0,col=1:2,lty=1:2)
plot(pout,multiple=0,se=1,uniform=1,col=1:2)
pout<-predict(out,uniform=0,se=0,newdata=sTRACE[1:10,])
plot(pout,multiple=1,se=0,uniform=0)
#### cox.aalen
out<-cox.aalen(Surv(time,status==9)~prop(age)+prop(sex)+
prop(diabetes)+chf+vf,
data=sTRACE,max.time=7,n.sim=0,resample.iid=1)
pout<-predict(out,X=rbind(c(1,0,0),c(1,1,0)),Z=rbind(c(55,0,1),c(60,1,1)))
head(pout$S0[,1:5]); head(pout$se.S0[,1:5])
par(mfrow=c(2,2))
plot(pout,multiple=1,se=0,uniform=0,col=1:2,lty=1:2)
plot(pout,multiple=0,se=1,uniform=1,col=1:2)
pout<-predict(out,uniform=0,se=0,newdata=sTRACE[1:10,])
plot(pout,multiple=1,se=0,uniform=0)
#### prop.odds model
add<-prop.odds(Event(time,cause!=0)~factor(tcell),data=bmt)
out <- predict(add,X=1,Z=0)
plot(out,multiple=1,uniform=1,col=1:3,lty=1,se=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.