View source: R/anomalize-plotting.R
plot_anomalies | R Documentation |
plot_anomalies()
is an interactive and scalable function for visualizing anomalies in time series data.
Plots are available in interactive plotly
(default) and static ggplot2
format.
plot_anomalies_decomp()
: Takes in data from the anomalize()
function, and returns a plot of the anomaly decomposition. Useful for interpeting
how the anomalize()
function is determining outliers from "remainder".
plot_anomalies_cleaned()
helps users visualize the before/after of
cleaning anomalies.
plot_anomalies(
.data,
.date_var,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.anom_color = "#e31a1c",
.anom_alpha = 1,
.anom_size = 1.5,
.ribbon_fill = "grey20",
.ribbon_alpha = 0.2,
.legend_show = TRUE,
.title = "Anomaly Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Anomaly",
.interactive = TRUE,
.trelliscope = FALSE,
.trelliscope_params = list()
)
plot_anomalies_decomp(
.data,
.date_var,
.facet_vars = NULL,
.facet_scales = "free",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.title = "Anomaly Decomposition Plot",
.x_lab = "",
.y_lab = "",
.interactive = TRUE
)
plot_anomalies_cleaned(
.data,
.date_var,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.cleaned_line_color = "#e31a1c",
.cleaned_line_size = 0.5,
.cleaned_line_type = 1,
.cleaned_line_alpha = 1,
.legend_show = TRUE,
.title = "Anomalies Cleaned Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.trelliscope = FALSE,
.trelliscope_params = list()
)
.data |
A |
.date_var |
A column containing either date or date-time values |
.facet_vars |
One or more grouping columns that broken out into |
.facet_ncol |
Number of facet columns. |
.facet_nrow |
Number of facet rows (only used for |
.facet_scales |
Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x" |
.facet_dir |
The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h". |
.facet_collapse |
Multiple facets included on one facet strip instead of multiple facet strips. |
.facet_collapse_sep |
The separator used for collapsing facets. |
.facet_strip_remove |
Whether or not to remove the strip and text label for each facet. |
.line_color |
Line color. |
.line_size |
Line size. |
.line_type |
Line type. |
.line_alpha |
Line alpha (opacity). Range: (0, 1). |
.anom_color |
Color for the anomaly dots |
.anom_alpha |
Opacity for the anomaly dots. Range: (0, 1). |
.anom_size |
Size for the anomaly dots |
.ribbon_fill |
Fill color for the acceptable range |
.ribbon_alpha |
Fill opacity for the acceptable range. Range: (0, 1). |
.legend_show |
Toggles on/off the Legend |
.title |
Plot title. |
.x_lab |
Plot x-axis label |
.y_lab |
Plot y-axis label |
.color_lab |
Plot label for the color legend |
.interactive |
If TRUE, returns a |
.trelliscope |
Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have |
.trelliscope_params |
Pass parameters to the
|
.cleaned_line_color |
Line color. |
.cleaned_line_size |
Line size. |
.cleaned_line_type |
Line type. |
.cleaned_line_alpha |
Line alpha (opacity). Range: (0, 1). |
A plotly
or ggplot2
visualization
# Plot Anomalies
library(dplyr)
walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
anomalize(Date, Weekly_Sales) %>%
plot_anomalies(Date, .facet_ncol = 2, .ribbon_alpha = 0.25, .interactive = FALSE)
# Plot Anomalies Decomposition
library(dplyr)
walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
anomalize(Date, Weekly_Sales, .message = FALSE) %>%
plot_anomalies_decomp(Date, .interactive = FALSE)
# Plot Anomalies Cleaned
library(dplyr)
walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
anomalize(Date, Weekly_Sales, .message = FALSE) %>%
plot_anomalies_cleaned(Date, .facet_ncol = 2, .interactive = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.