R/autograd.R

Defines functions autograd_grad autograd_backward create_b create_f autograd_function autograd_set_grad_mode with_enable_grad with_no_grad with_detect_anomaly

Documented in autograd_backward autograd_function autograd_grad autograd_set_grad_mode with_detect_anomaly with_enable_grad with_no_grad

#' @include tensor.R
NULL

#' Context-manager that enable anomaly detection for the autograd engine.
#'
#' This does two things:
#'
#' - Running the forward pass with detection enabled will allow the backward
#' pass to print the traceback of the forward operation that created the failing
#' backward function.
#' - Any backward computation that generate "nan" value will raise an error.
#'
#' @section Warning:
#' This mode should be enabled only for debugging as the different tests
#' will slow down your program execution.
#'
#' @param code Code that will be executed in the detect anomaly context.
#'
#' @examples
#' x <- torch_randn(2, requires_grad = TRUE)
#' y <- torch_randn(1)
#' b <- (x^y)$sum()
#' y$add_(1)
#'
#' try({
#'   b$backward()
#'
#'   with_detect_anomaly({
#'     b$backward()
#'   })
#' })
#' @export
with_detect_anomaly <- function(code) {
  warn("This mode should be enabled only for debugging as the different tests will slow down your program execution.")
  current_mode <- cpp_autograd_detect_anomaly_is_enabled()
  withr::with_(
    set = function() {
      cpp_autograd_set_detect_anomaly(TRUE)
    },
    reset = function(old) {
      cpp_autograd_set_detect_anomaly(current_mode)
    }
  )(code)
}

#' Temporarily modify gradient recording.
#'
#' @param code code to be executed with no gradient recording.
#'
#' @examples
#' x <- torch_tensor(runif(5), requires_grad = TRUE)
#' with_no_grad({
#'   x$sub_(torch_tensor(as.numeric(1:5)))
#' })
#' x
#' x$grad
#' @export
with_no_grad <- function(code) {
  current_mode <- cpp_autograd_is_enabled()
  withr::with_(
    set = function() {
      cpp_autograd_set_grad_mode(FALSE)
    },
    reset = function(old) {
      cpp_autograd_set_grad_mode(current_mode)
    }
  )(code)
}


#' Enable grad
#'
#' Context-manager that enables gradient calculation.
#' Enables gradient calculation, if it has been disabled via [with_no_grad].
#'
#' This context manager is thread local; it will not affect computation in
#' other threads.
#'
#' @param code code to be executed with gradient recording.
#'
#' @examples
#'
#' x <- torch_tensor(1, requires_grad = TRUE)
#' with_no_grad({
#'   with_enable_grad({
#'     y <- x * 2
#'   })
#' })
#' y$backward()
#' x$grad
#' @export
with_enable_grad <- function(code) {
  current_mode <- cpp_autograd_is_enabled()
  withr::with_(
    set = function() {
      cpp_autograd_set_grad_mode(TRUE)
    },
    reset = function(old) {
      cpp_autograd_set_grad_mode(current_mode)
    }
  )(code)
}

Tensor$set("active", "grad", function(x) {
  if (missing(x)) {
    cpp_tensor_grad(self)
  } else {
    self$set_grad_(x)
    invisible(x)
  }
})

Tensor$set("active", "requires_grad", function(requires_grad) {
  if (missing(requires_grad)) {
    return(cpp_tensor_requires_grad(self$ptr))
  } else {
    self$requires_grad_(requires_grad)
  }
})

Tensor$set("public", "backward", function(gradient = list(), retain_graph = create_graph,
                                          create_graph = FALSE, inputs = NULL, ...) {
  
  args <- list(...)
  if (!is.null(args$keep_graph)) {
    rlang::warn(c(
      "`keep_graph` has been deprecated. Please use `retain_graph` instead.",
      "i" = "`keep_graph` will take precedence."),
      .frequency = "once",
      .frequency_id = "keep_graph"
    )
    retain_graph <- keep_graph
  }
  
  invisible(private$`__backward`(
    gradient = gradient, inputs = inputs, retain_graph = retain_graph,
    create_graph = create_graph
  ))
})

Tensor$set("public", "retain_grad", function() {
  invisible(private$`_retain_grad`())
})

Tensor$set("public", "set_grad_", function(new_grad) {
  cpp_tensor_set_grad_(self$ptr, new_grad$ptr)
})

torch_hook <- R6::R6Class(
  classname = "torch_hook",
  public = list(
    x = NULL,
    pos = NULL,
    initialize = function(x, pos) {
      self$x <- x
      self$pos <- pos
    },
    remove = function() {
      cpp_tensor_remove_hook(self$x$ptr, self$pos)
    },
    print = function() {
      cat("<torch_hook>")
    }
  )
)

Tensor$set("public", "register_hook", function(hook) {
  wrap <- function(grad) {
    out <- hook(Tensor$new(ptr = grad))
    if (!is_torch_tensor(out)) {
      cpp_tensor_undefined()
    } else {
      out$ptr
    }
  }
  pos <- cpp_tensor_register_hook(self$ptr, wrap)
  torch_hook$new(self, pos)
})


#' Set grad mode
#'
#' Sets or disables gradient history.
#'
#' @param enabled bool wether to enable or disable the gradient recording.
#'
#' @export
autograd_set_grad_mode <- function(enabled) {
  cpp_autograd_set_grad_mode(enabled)
}

#' Class representing the context.
#'
AutogradContext <- R6::R6Class(
  classname = "torch_autograd_context",
  public = list(

    #' @field ptr (Dev related) pointer to the context c++ object.
    ptr = NULL,

    #' @description
    #' (Dev related) Initializes the context. Not user related.
    #'
    #' @param ptr pointer to the c++ object
    #' @param env environment that encloses both forward and backward
    #' @param argument_names names of forward arguments
    #' @param argument_needs_grad whether each argument in forward needs grad.
    initialize = function(ptr, env, argument_names = NULL, argument_needs_grad = NULL) {
      self$ptr <- ptr
      private$.env <- env
      if (!is.null(argument_names) && !is.null(argument_needs_grad)) {
        private$set_arguments(argument_names, argument_needs_grad)
      }
    },

    #' @description
    #' Saves given objects for a future call to backward().
    #'
    #' This should be called at most once, and only from inside the `forward()`
    #' method.
    #'
    #' Later, saved objects can be accessed through the `saved_variables` attribute.
    #' Before returning them to the user, a check is made to ensure they weren’t used
    #' in any in-place operation that modified their content.
    #'
    #' Arguments can also be any kind of R object.
    #'
    #' @param ... any kind of R object that will be saved for the backward pass.
    #'   It's common to pass named arguments.
    save_for_backward = function(...) {
      args <- rlang::list2(...)

      private$.env$.is_torch_tensor <- as.logical(sapply(args, is_torch_tensor))

      vars <- args[private$.env$.is_torch_tensor]
      other <- args[!private$.env$.is_torch_tensor]

      cpp_autograd_context_save_for_backward(self$ptr, vars)
      private$.env$.other <- other

      if (is.null(names(vars))) {
        nms <- rep("", length(vars))
      } else {
        nms <- names(vars)
      }

      cpp_autograd_context_set_saved_variables_names(self$ptr, nms)
    },

    #' @description
    #' Marks outputs as non-differentiable.
    #'
    #' This should be called at most once, only from inside the `forward()` method,
    #' and all arguments should be outputs.
    #'
    #' This will mark outputs as not requiring gradients, increasing the efficiency
    #' of backward computation. You still need to accept a gradient for each output
    #' in `backward()`, but it’s always going to be a zero tensor with the same
    #' shape as the shape of a corresponding output.
    #'
    #' This is used e.g. for indices returned from a max Function.
    #'
    #' @param ... non-differentiable outputs.
    mark_non_differentiable = function(...) {
      vars <- rlang::list2(...)
      var_list <- torch_variable_list(vars)
      cpp_autograd_context_mark_non_differentiable(self$ptr, var_list$ptr)
      invisible(NULL)
    },

    #' @description
    #' Marks given tensors as modified in an in-place operation.
    #'
    #' This should be called at most once, only from inside the `forward()` method,
    #' and all arguments should be inputs.
    #'
    #' Every tensor that’s been modified in-place in a call to `forward()` should
    #' be given to this function, to ensure correctness of our checks. It doesn’t
    #' matter whether the function is called before or after modification.
    #'
    #' @param ... tensors that are modified in-place.
    mark_dirty = function(...) {
      vars <- rlang::list2(...)
      var_list <- torch_variable_list(vars)
      cpp_autograd_context_mark_dirty(self$ptr, var_list$ptr)
      invisible(NULL)
    }
  ),
  active = list(

    #' @field needs_input_grad boolean listing arguments of `forward` and whether they require_grad.
    needs_input_grad = function() {
      setNames(as.list(private$get_argument_needs_grad()), private$get_argument_names())
    },

    #' @field saved_variables list of objects that were saved for backward via `save_for_backward`.
    saved_variables = function() {
      private$get_saved_variables()
    }
  ),
  private = list(
    .env = NULL,
    set_arguments = function(names, needs_grad) {
      cpp_autograd_context_set_arguments(self$ptr, names, needs_grad)
    },
    get_argument_names = function() {
      cpp_autograd_context_get_argument_names(self$ptr)
    },
    get_argument_needs_grad = function() {
      cpp_autograd_context_get_argument_needs_grad(self$ptr)
    },
    get_saved_variables = function() {

      # retrieve variables
      vars <- cpp_autograd_context_get_saved_variables(self$ptr)

      nms <- cpp_autograd_context_get_saved_variables_names(self$ptr)
      if (!all(nms == "")) {
        names(vars) <- nms
      }

      # retrieve other
      other <- private$.env$.other

      # retrieve order
      is_tensors <- private$.env$.is_torch_tensor
      indexes <- integer(length = length(is_tensors))
      indexes[is_tensors] <- cumsum(is_tensors[is_tensors])
      indexes[!is_tensors] <- cumsum(!is_tensors[!is_tensors])

      mapply(
        FUN = function(is_tensor, index) {
          if (is_tensor) {
            vars[index]
          } else {
            other[index]
          }
        },
        is_tensors,
        indexes,
        USE.NAMES = FALSE
      )
    }
  )
)

#' Records operation history and defines formulas for differentiating ops.
#'
#' Every operation performed on Tensor's creates a new function object, that
#' performs the computation, and records that it happened. The history is
#' retained in the form of a DAG of functions, with edges denoting data
#' dependencies (input <- output). Then, when backward is called, the graph is
#' processed in the topological ordering, by calling `backward()` methods of each
#' Function object, and passing returned gradients on to next Function's.
#'
#' @param forward Performs the operation. It must accept a context `ctx` as the first argument,
#'   followed by any number of arguments (tensors or other types). The context can be
#'   used to store tensors that can be then retrieved during the backward pass.
#'   See [AutogradContext] for more information about context methods.
#' @param backward Defines a formula for differentiating the operation. It must accept
#'   a context `ctx` as the first argument, followed by as many outputs did `forward()`
#'   return, and it should return a named list. Each argument is the gradient w.r.t
#'   the given output, and each element in the returned list should be the gradient
#'   w.r.t. the corresponding input. The context can be used to retrieve tensors saved
#'   during the forward pass. It also has an attribute `ctx$needs_input_grad` as a
#'   named list of booleans representing whether each input needs gradient.
#'   E.g., `backward()` will have `ctx$needs_input_grad$input = TRUE` if the `input`
#'   argument to `forward()` needs gradient computated w.r.t. the output.
#'   See [AutogradContext] for more information about context methods.
#'
#' @examples
#'
#' exp2 <- autograd_function(
#'   forward = function(ctx, i) {
#'     result <- i$exp()
#'     ctx$save_for_backward(result = result)
#'     result
#'   },
#'   backward = function(ctx, grad_output) {
#'     list(i = grad_output * ctx$saved_variable$result)
#'   }
#' )
#' @export
autograd_function <- function(forward, backward) {
  force(forward)
  force(backward)
  rlang::new_function(
    args = rlang::fn_fmls(forward)[-1],
    body = quote({

      # environment to transfer info from this function to
      # the forward/backward function
      .env <- rlang::new_environment()
      .env$forward_returns_list <- TRUE

      # create the c++ lambda wrapping the R function
      .f_ <- create_f(.env, forward)
      .b_ <- create_b(.env, backward)

      # passing the variables through cpp_Function_apply
      # other arguments are passed through `.env`
      args <- mget(rlang::fn_fmls_names(forward)[-1])
      is_var <- sapply(args, function(arg) {
        is_torch_tensor(arg) && arg$requires_grad
      })

      .env$variables <- args[is_var]
      .env$other <- args[!is_var]

      .env$argument_names <- names(args)
      .env$argument_needs_grad <- names(args) %in% names(.env$variables)

      res <- cpp_Function_apply(.env$variables, .f_, .b_)

      # post processing of results
      if (!.env$forward_returns_list) {
        res <- res[[1]]
      }

      res
    })
  )
}

create_f <- function(.env, forward) {
  force(.env)
  force(forward)
  f <- function(ctx, inputs) {
    names(inputs) <- names(.env$variables)
    args <- append(inputs, .env$other)

    args$ctx <- AutogradContext$new(
      ctx, .env, .env$argument_names,
      .env$argument_needs_grad
    )

    res <- do.call(forward, args)

    if (!is.list(res)) {
      .env$forward_returns_list <- FALSE
      res <- list(res)
    }

    res
  }
  cpp_Function_lambda(f)
}

create_b <- function(.env, backward) {
  force(.env)
  force(backward)
  b <- function(ctx, grad_output) {

    # parse pointers to R objects
    ctx <- AutogradContext$new(ctx, .env)

    # destructure the grad_output list
    fmls <- rlang::fn_fmls_names(backward)[-1] # remove the context
    if (length(grad_output) > length(fmls)) {
      if (length(fmls) == 1) { # and length(grad_output) > 1
        grad_output <- list(grad_output)
      } else {
        d <- length(grad_output) - length(fmls)
        grad_output <- append(
          grad_output[1:(length(grad_output) - (d + 1))],
          list(grad_output[(length(grad_output) - d):length(grad_output)])
        )
      }
    }
    args <- append(list(ctx), grad_output)
    res <- do.call(backward, args)

    needs_grad <- ctx$needs_input_grad
    argument_names <- names(needs_grad)
    argument_needs_grad <- as.logical(needs_grad)

    res <- res[argument_names[argument_needs_grad]]

    res
  }
  cpp_Function_lambda(b)
}

Edge <- R6::R6Class(
  classname = "autograd_edge",
  public = list(
    ptr = NULL,
    initialize = function(ptr) {
      self$ptr <- ptr
    },
    func = function() {
      Node$new(cpp_autograd_edge_function(self$ptr))
    }
  )
)

Node <- R6::R6Class(
  classname = "autograd_node",
  public = list(
    ptr = NULL,
    initialize = function(ptr) {
      self$ptr <- ptr
    },
    print = function() {
      cat(cpp_autograd_node_name(self$ptr))
    }
  ),
  active = list(
    next_functions = function() {
      l <- lapply(cpp_autograd_node_next_edges(self$ptr), Edge$new)
      lapply(l, function(x) x$func())
    }
  )
)

Tensor$set("active", "grad_fn", function() {
  o <- cpp_tensor_grad_fn(self$ptr)

  if (cpp_pointer_is_null(o)) {
    return(NULL)
  }

  Node$new(o)
})

#' Computes the sum of gradients of given tensors w.r.t. graph leaves.
#'
#' The graph is differentiated using the chain rule. If any of tensors are
#' non-scalar (i.e. their data has more than one element) and require gradient,
#' then the Jacobian-vector product would be computed, in this case the function
#' additionally requires specifying `grad_tensors`. It should be a sequence of
#' matching length, that contains the “vector” in the Jacobian-vector product,
#' usually the gradient of the differentiated function w.r.t. corresponding
#' tensors (None is an acceptable value for all tensors that don’t need gradient
#' tensors).
#'
#' This function accumulates gradients in the leaves - you might need to zero
#' them before calling it.
#'
#' @param tensors (list of Tensor) – Tensors of which the derivative will
#' be computed.
#' @param grad_tensors (list of (Tensor or `NULL)) – The “vector” in the
#' Jacobian-vector product, usually gradients w.r.t. each element of
#' corresponding tensors. `NULL` values can be specified for scalar Tensors or
#' ones that don’t require grad. If a `NULL` value would be acceptable for all
#' grad_tensors, then this argument is optional.
#' @param retain_graph (bool, optional) – If `FALSE`, the graph used to compute
#' the grad will be freed. Note that in nearly all cases setting this option to
#' `TRUE` is not needed and often can be worked around in a much more efficient
#' way. Defaults to the value of `create_graph`.
#' @param create_graph (bool, optional) – If `TRUE`, graph of the derivative will
#' be constructed, allowing to compute higher order derivative products.
#' Defaults to `FALSE`.
#'
#' @examples
#' x <- torch_tensor(1, requires_grad = TRUE)
#' y <- 2 * x
#'
#' a <- torch_tensor(1, requires_grad = TRUE)
#' b <- 3 * a
#'
#' autograd_backward(list(y, b))
#' @export
autograd_backward <- function(tensors, grad_tensors = NULL, retain_graph = create_graph,
                              create_graph = FALSE) {
  if (!is.list(tensors)) {
    tensors <- list(tensors)
  }

  tensors_ <- torch_variable_list(tensors)

  if (is.null(grad_tensors)) {
    grad_tensors <- lapply(seq_along(tensors), function(x) NULL)
  } else if (!is.list(grad_tensors)) {
    grad_tensors <- list(grad_tensors)
  }

  null <- sapply(grad_tensors, is.null)
  if (sum(null) > 0) {
    grad_tensors[null] <- lapply(
      seq_len(sum(null)),
      function(x) cpp_tensor_undefined()
    )
  }

  grad_tensors_ <- torch_variable_list(grad_tensors)

  cpp_autograd_backward(
    tensors_$ptr,
    grad_tensors_$ptr,
    retain_graph,
    create_graph
  )

  invisible(NULL)
}

#' Computes and returns the sum of gradients of outputs w.r.t. the inputs.
#'
#' `grad_outputs` should be a list of length matching output containing the “vector”
#' in Jacobian-vector product, usually the pre-computed gradients w.r.t. each of
#' the outputs. If an output doesn’t require_grad, then the gradient can be None).
#'
#' If only_inputs is `TRUE`, the function will only return a list of gradients w.r.t
#' the specified inputs. If it’s `FALSE`, then gradient w.r.t. all remaining leaves
#' will still be computed, and will be accumulated into their `.grad` attribute.
#' @param outputs (sequence of Tensor) – outputs of the differentiated function.
#' @param inputs (sequence of Tensor) – Inputs w.r.t. which the gradient will be
#' returned (and not accumulated into .grad).
#' @param grad_outputs (sequence of Tensor) – The “vector” in the Jacobian-vector
#' product. Usually gradients w.r.t. each output. None values can be specified for
#' scalar Tensors or ones that don’t require grad. If a None value would be acceptable
#' for all `grad_tensors`, then this argument is optional. Default: None.
#' @param retain_graph (bool, optional) – If `FALSE`, the graph used to compute the
#' grad will be freed. Note that in nearly all cases setting this option to `TRUE` is
#' not needed and often can be worked around in a much more efficient way.
#' Defaults to the value of `create_graph`.
#' @param create_graph (bool, optional) – If `TRUE, graph of the derivative will
#' be constructed, allowing to compute higher order derivative products.
#' Default: `FALSE`.
#' @param allow_unused (bool, optional) – If `FALSE`, specifying inputs that were
#' not used when computing outputs (and therefore their grad is always zero) is an
#' error. Defaults to `FALSE`
#'
#' @examples
#' w <- torch_tensor(0.5, requires_grad = TRUE)
#' b <- torch_tensor(0.9, requires_grad = TRUE)
#' x <- torch_tensor(runif(100))
#' y <- 2 * x + 1
#' loss <- (y - (w * x + b))^2
#' loss <- loss$mean()
#'
#' o <- autograd_grad(loss, list(w, b))
#' o
#' @export
autograd_grad <- function(outputs, inputs, grad_outputs = NULL, retain_graph = create_graph,
                          create_graph = FALSE, allow_unused = FALSE) {
  if (!is.list(outputs)) {
    outputs <- list(outputs)
  }

  if (!is.list(inputs)) {
    inputs <- list(inputs)
  }

  if (is.null(grad_outputs)) {
    grad_outputs <- lapply(
      seq_along(outputs),
      function(x) cpp_tensor_undefined()
    )
  } else if (!is.list(grad_outputs)) {
    grad_outputs <- list(grad_outputs)
  }

  cpp_autograd_grad(
    outputs,
    inputs,
    grad_outputs,
    retain_graph,
    create_graph,
    allow_unused
  )
}

Try the torch package in your browser

Any scripts or data that you put into this service are public.

torch documentation built on Jan. 24, 2023, 1:05 a.m.