Nothing
#' @export
transform_to_tensor.default <- function(img) {
not_implemented_for_class(img)
}
#' @export
transform_convert_image_dtype.default <- function(img, dtype) {
not_implemented_for_class(img)
}
#' @export
transform_normalize.default <- function(img, mean, std, inplace = FALSE) {
not_implemented_for_class(img)
}
#' @export
transform_resize.default <- function(img, size, interpolation) {
not_implemented_for_class(img)
}
#' @export
transform_center_crop.default <- function(img, size) {
output_size <- size
if (length(size) == 1)
output_size <- rep(size, 2)
output_size <- as.integer(output_size)
size <- get_image_size(img)
image_height <- size[1]
image_width <- size[2]
crop_height <- output_size[1]
crop_width <- output_size[2]
if (crop_width > image_width || crop_height > image_height) {
padding_ltrb <- c(
if (crop_width > image_width) (crop_width - image_width) %/% 2 else 0,
if (crop_width > image_width) (crop_width - image_width + 1) %/% 2 else 0,
if (crop_height > image_height) (crop_height - image_height) %/% 2 else 0,
if (crop_height > image_height) (crop_height - image_height + 1) %/% 2 else 0
)
img <- transform_pad(img, padding_ltrb, fill = 0) # PIL uses fill value 0
size <- get_image_size(img)
image_height <- size[1]
image_width <- size[2]
if (crop_width == image_width && crop_height == image_height) return(img)
}
crop_top <- as.integer((image_height - crop_height) / 2)
crop_left <- as.integer((image_width - crop_width) / 2)
# if either of these is 0, we will lose a pixel in transform_crop
if (crop_top == 0) crop_top <- 1
if (crop_left == 0) crop_left <- 1
transform_crop(img, crop_top, crop_left, crop_height, crop_width)
}
#' @export
transform_pad.default <- function(img, padding, fill = 0, padding_mode = "constant") {
not_implemented_for_class(img)
}
#' @export
transform_random_apply.default <- function(img, transforms, p = 0.5) {
if (p < stats::runif(1))
return(img)
for (tf in transforms) {
img <- tf(img)
}
img
}
#' @export
transform_random_choice.default <- function(img, transforms) {
i <- sample.int(length(transforms), 1)
transforms[[i]](img)
}
#' @export
transform_random_order.default <- function(img, transforms) {
i <- sample.int(length(transforms), size = length(transforms))
transforms <- transforms[i]
for (tf in transforms) {
img <- tf(img)
}
img
}
get_random_crop_params <- function(img, output_size) {
img_size <- get_image_size(img)
w <- img_size[1]; h <- img_size[2]
th <- output_size[1]; tw <- output_size[2]
if (w == tw && h == th)
return(c(0, 0, h, w))
i <- as.integer(torch::torch_randint(1, h - th + 1, size=1))
j <- as.integer(torch::torch_randint(1, w - tw + 1, size=1))
c(i, j, th, tw)
}
#' @export
transform_random_crop.default <- function(img, size, padding=NULL, pad_if_needed=FALSE,
fill=0, padding_mode="constant") {
if (length(size) == 1)
size <- c(size, size)
size <- as.integer(size)
if (!is.null(padding))
img <- transform_pad(img, padding, fill, padding_mode)
img_size <- get_image_size(img)
width <- img_size[1]; height <- img_size[2]
# pad the width if needed
if (pad_if_needed && width < size[2]) {
padding <- c(size[2] - width, 0)
img <- transform_pad(img, padding, fill, padding_mode)
}
# pad the height if needed
if (pad_if_needed && height < size[1]) {
padding <- c(0, size[1] - height)
img <- transform_pad(img, padding, fill, padding_mode)
}
params <- get_random_crop_params(img, size)
transform_crop(img, params[1], params[2], params[3], params[4])
}
#' @export
transform_random_horizontal_flip.default <- function(img, p = 0.5) {
if (stats::runif(1) < p)
img <- transform_hflip(img)
img
}
#' @export
transform_random_vertical_flip.default <- function(img, p = 0.5) {
if (stats::runif(1) < p)
img <- transform_vflip(img)
img
}
get_random_resized_crop_params <- function(img, scale, ratio) {
img_size <- get_image_size(img)
width <- img_size[2]; height <- img_size[1]
area <- height * width
for (i in 1:10) {
target_area <- as.numeric(area * torch::torch_empty(1)$uniform_(scale[1], scale[2]))
log_ratio <- torch::torch_log(torch::torch_tensor(ratio))
aspect_ratio <- as.numeric(torch::torch_exp(
torch::torch_empty(1)$uniform_(as.numeric(log_ratio[1]), as.numeric(log_ratio[2]))
))
w <- as.integer(round(sqrt(target_area * aspect_ratio)))
h <- as.integer(round(sqrt(target_area / aspect_ratio)))
if (1 < w && w <= width && 1 < h && h <= height) {
i <- sample.int(height - h + 1, size=1)
j <- sample.int(width - w + 1, size=1)
return(c(i, j, h, w))
}
}
# Fallback to central crop
in_ratio <- width / height
if (in_ratio < min(ratio)) {
w <- width
h <- as.integer(round(w / min(ratio)))
} else if (in_ratio > max(ratio)) {
h <- height
w <- as.integer(round(h * max(ratio)))
} else {
w <- width
h <- height
}
i <- (height - h) %/% 2
j <- (width - w) %/% 2
c(i, j, h, w)
}
#' @export
transform_random_resized_crop.default <- function(img, size, scale=c(0.08, 1.0),
ratio=c(3. / 4., 4. / 3.),
interpolation=2) {
params <- get_random_resized_crop_params(img, scale, ratio)
transform_resized_crop(img, params[1], params[2], params[3], params[4], size,
interpolation)
}
#' @export
transform_five_crop.default <- function(img, size) {
not_implemented_for_class(img)
}
#' @export
transform_ten_crop.default <- function(img, size, vertical_flip = FALSE) {
not_implemented_for_class(img)
}
#' @export
transform_linear_transformation.default <- function(img, transformation_matrix,
mean_vector) {
not_implemented_for_class(img)
}
get_color_jitter_params <- function(brightness, contrast, saturation, hue) {
transforms <- list()
if (!is.null(brightness)) {
brightness_factor <- stats::runif(1, min = brightness[1], max = brightness[2])
transforms <- append(
transforms,
list(function(img) transform_adjust_brightness(img, brightness_factor))
)
}
if (!is.null(contrast)) {
contrast_factor <- stats::runif(1, contrast[1], contrast[2])
transforms <- append(
transforms,
list(function(img) transform_adjust_contrast(img, contrast_factor))
)
}
if (!is.null(saturation)) {
saturation_factor <- stats::runif(1, saturation[1], saturation[2])
transforms <- append(
transforms,
list(function(img) transform_adjust_saturation(img, saturation_factor))
)
}
if (!is.null(hue)) {
hue_factor <- stats::runif(1, hue[1], hue[2])
transforms <- append(
transforms,
list(function(img) transform_adjust_hue(img, hue_factor))
)
}
# shuffle
i <- sample.int(length(transforms), length(transforms))
transforms <- transforms[i]
function(img) {
for (tf in transforms) {
img <- tf(img)
}
img
}
}
check_color_jitter_input <- function(value, center = 1, bound = c(0, Inf),
clip_first_on_zero = TRUE) {
if (length(value) == 1) {
if (value < 0)
value_error("must be positive if a single number")
value <- c(center - value, center + value)
if (clip_first_on_zero)
value[1] <- max(value[1], 0.0)
} else if (length(value == 2)) {
if (value[1] < bound[1] || value[2] > bound[2])
value_error("out of bounds.")
}
# if value is 0 or (1., 1.) for brightness/contrast/saturation
# or (0., 0.) for hue, do nothing
if (value[1] == value[2] && value[2] == center) {
value <- NULL
}
value
}
#' @export
transform_color_jitter.default <- function(img, brightness=0, contrast=0,
saturation=0, hue=0) {
brightness <- check_color_jitter_input(brightness)
contrast <- check_color_jitter_input(contrast)
saturation <- check_color_jitter_input(saturation)
hue <- check_color_jitter_input(hue, center=0, bound=c(-0.5, 0.5),
clip_first_on_zero=FALSE)
tf <- get_color_jitter_params(brightness, contrast, saturation, hue)
tf(img)
}
get_random_rotation_params <- function(degrees) {
as.numeric(torch::torch_empty(1)$uniform_(degrees[1], degrees[2]))
}
#' @export
transform_random_rotation.default <- function(img, degrees, resample=FALSE,
expand=FALSE, center=NULL, fill=NULL) {
if (length(degrees) == 1) {
if (degrees < 0)
value_error("degrees must be positive if it's a single value")
degrees <- c(-degrees, degrees)
} else if (length(degrees) != 2) {
value_error("degrees must be length 1 or 2")
}
angle <- get_random_rotation_params(degrees)
transform_rotate(img, angle, resample, expand, center, fill)
}
get_random_affine_params <- function(degrees,
translate,
scale_ranges,
shears,
img_size) {
angle <- as.numeric(torch::torch_empty(1)$uniform_(degrees[1], degrees[2]))
if (!is.null(translate)) {
max_dx = as.numeric(translate[1] * img_size[1])
max_dy = as.numeric(translate[2] * img_size[2])
tx = as.integer(round(as.numeric(torch::torch_empty(1)$uniform_(-max_dx, max_dx))))
ty = as.integer(round(as.numeric(torch::torch_empty(1)$uniform_(-max_dy, max_dy))))
translations <- c(tx, ty)
} else {
translations <- c(0,0)
}
if (!is.null(scale_ranges)) {
scale <- as.numeric(torch::torch_empty(1)$uniform_(scale_ranges[1], scale_ranges[2]))
} else {
scale <- 1
}
shear_x <- shear_y <- 0.0
if (!is.null(shears)) {
shear_x <- as.numeric(torch::torch_empty(1)$uniform_(shears[1], shears[2]))
if (length(shears) == 4)
shear_y <- as.numeric(torch::torch_empty(1)$uniform_(shears[3], shears[4]))
}
shear <- c(shear_x, shear_y)
list(angle, translations, scale, shear)
}
#' @export
transform_random_affine.default <- function(img, degrees, translate=NULL, scale=NULL,
shear=NULL, resample=0, fillcolor=0) {
if (length(degrees) == 1) {
if (degrees < 0)
value_error("degrees must be positive if it's a single value")
degrees <- c(-degrees, degrees)
} else if (length(degrees) != 2) {
value_error("degrees must be length 1 or 2")
}
if (!is.null(translate)) {
if (length(translate) != 2)
value_error("translate must be length 2")
if (any(translate > 1) || any(translate < 0))
value_error("translate must be between 0 and 1")
}
if (!is.null(scale)) {
if (length(scale) != 2)
value_error("scale must be length 2")
if (any(scale > 0))
value_error("scale must be positive")
}
if (!is.null(shear)) {
if (length(shear) == 1) {
if (shear < 0)
value_error("shear must be positive if it's a single value")
degrees <- c(-degrees, degrees)
} else if (!length(shear) %in% c(2, 4)) {
value_error("shear's length must be 1, 2, or 4")
}
}
img_size <- get_image_size(img)
ret = get_random_affine_params(degrees, translate, scale, shear, img_size)
transform_affine(img, ret[[1]], ret[[2]], ret[[3]], ret[[4]],
resample=resample, fillcolor=fillcolor)
}
#' @export
transform_grayscale.default <- function(img, num_output_channels) {
not_implemented_for_class(img)
}
#' @export
transform_random_grayscale.default <- function(img, p = 0.1) {
not_implemented_for_class(img)
}
get_random_perspective_params <- function(width, height, distortion_scale) {
half_height = height %/% 2
half_width = width %/% 2
topleft = c(
as.integer(torch::torch_randint(1 + 0,as.integer(distortion_scale * half_width) + 1, size=1)),
as.integer(torch::torch_randint(1 + 0,as.integer(distortion_scale * half_height) + 1, size=1))
)
topright = c(
as.integer(torch::torch_randint(1 + width -as.integer(distortion_scale * half_width) - 1, width, size=1)),
as.integer(torch::torch_randint(1 + 0,as.integer(distortion_scale * half_height) + 1, size=1))
)
botright = c(
as.integer(torch::torch_randint(1 + width -as.integer(distortion_scale * half_width) - 1, width, size=1)),
as.integer(torch::torch_randint(1 + height -as.integer(distortion_scale * half_height) - 1, height, size=1))
)
botleft = c(
as.integer(torch::torch_randint(1 + 0,as.integer(distortion_scale * half_width) + 1, size=1)),
as.integer(torch::torch_randint(1 + height -as.integer(distortion_scale * half_height) - 1, height, size=1))
)
startpoints = list(c(1 + 0, 1 + 0), c(1 + width - 1, 1 + 0), c(1 + width - 1, 1 + height - 1), c(1 + 0, 1 + height - 1))
endpoints = list(topleft, topright, botright, botleft)
list(startpoints, endpoints)
}
#' @export
transform_random_perspective.default <- function(img, distortion_scale=0.5, p=0.5,
interpolation=2, fill=0) {
if (stats::runif(1) < p) {
img_size <- get_image_size(img)
params <- get_random_perspective_params(img_size[1], img_size[2], distortion_scale)
img <- transform_perspective(img, params[[1]], params[[2]], interpolation, fill)
}
img
}
#' @export
transform_random_erasing.default <- function(img, p=0.5, scale=c(0.02, 0.33),
ratio=c(0.3, 3.3), value=0, inplace=FALSE) {
not_implemented_for_class(img)
}
# Other methods -----------------------------------------------------------
#' @export
transform_crop.default <- function(img, top, left, height, width) {
not_implemented_for_class(img)
}
#' @export
transform_hflip.default <- function(img) {
not_implemented_for_class(img)
}
#' @export
transform_vflip.default <- function(img) {
not_implemented_for_class(img)
}
#' @export
transform_resized_crop.default <- function(img, top, left, height, width, size,
interpolation = 2) {
img <- transform_crop(img, top, left, height, width)
img <- transform_resize(img, size, interpolation)
img
}
#' @export
transform_adjust_brightness.default <- function(img, brightness_factor) {
not_implemented_for_class(img)
}
#' @export
transform_adjust_contrast.default <- function(img, contrast_factor) {
not_implemented_for_class(img)
}
#' @export
transform_adjust_hue.default <- function(img, hue_factor) {
not_implemented_for_class(img)
}
#' @export
transform_adjust_saturation.default <- function(img, saturation_factor) {
not_implemented_for_class(img)
}
#' @export
transform_rotate.default <- function(img, angle, resample = 0, expand = FALSE,
center = NULL, fill = NULL) {
not_implemented_for_class(img)
}
#' @export
transform_affine.default <- function(img, angle, translate, scale, shear,
resample = 0, fillcolor = NULL) {
not_implemented_for_class(img)
}
#' @export
transform_perspective.default <- function(img, startpoints, endpoints, interpolation = 2,
fill = NULL) {
not_implemented_for_class(img)
}
#' @export
transform_adjust_gamma.default <- function(img, gamma, gain = 1) {
not_implemented_for_class(img)
}
# Helpers -----------------------------------------------------------------
not_implemented_for_class <- function(x) {
not_implemented_error(paste0("not implemented for ", class(x)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.