Nothing
#' Evaluation of forecasts using reliability curves
#'
#' A reliability curve visualizes miscalibration by displaying the (isotonic)
#' conditional event probability against the forecast value.
#'
#' @param ... Unused.
#' @inheritParams triptych
#'
#' @return A `triptych_reliability` object, that is a `vctrs_vctr` subclass, and has
#' a length equal to number of forecasting methods supplied in `x`. Each entry
#' is named according to the corresponding forecasting method,
#' and contains a list of named objects:
#' \itemize{
#' \item `estimate`: A data frame with the isotonic regression estimate.
#' \item `region`: Either an empty list, or a data frame of pointwise consistency
#' or confidence intervals
#' added by [add_consistency()] or [add_confidence()], respectively.
#' \item `x`: The numeric vector of original forecasts.
#' }
#' Access is most convenient through [estimates()], [regions()], and [forecasts()].
#'
#' @seealso Accessors: [estimates()], [regions()], [forecasts()], [observations()]
#'
#' Adding uncertainty quantification: [add_confidence()]
#'
#' Visualization: [plot.triptych_reliability()], [autoplot.triptych_reliability()]
#'
#' @examples
#' data(ex_binary, package = "triptych")
#'
#' rel <- reliability(ex_binary)
#' rel
#'
#' # 1. Choose 4 predictions
#' # 2. Visualize
#' # 3. Adjust the title of the legend
#' rel[c(1, 3, 6, 9)] |>
#' autoplot() +
#' ggplot2::guides(colour = ggplot2::guide_legend("Forecast"))
#'
#' # Build yourself using accessors
#' library(ggplot2)
#' df_est <- estimates(rel[c(1, 3, 6, 9)])
#' ggplot(df_est, aes(x = x, y = CEP, col = forecast)) +
#' geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1)) +
#' geom_path()
#'
#' @name reliability
NULL
#' @rdname reliability
#' @export
reliability <- function(x, y_var = "y", ..., y = NULL) {
x <- tibble::as_tibble(x)
if (is.null(y)) {
y_var <- tidyselect::vars_pull(names(x), !!rlang::enquo(y_var))
y <- x[[y_var]]
x <- dplyr::select(x, !y_var)
}
y <- vec_cast(y, to = double())
x <- dplyr::mutate_all(x, vec_cast, to = double())
vec_cast(x, to = new_triptych_reliability(y = y))
}
new_triptych_reliability <- function(x = list(), y = double()) {
new_vctr(x, y = y, class = "triptych_reliability")
}
# formatting
#' @export
format.triptych_reliability <- function(x, ...) {
sprintf("<named list[%i]>", sapply(x, length))
}
#' @export
vec_ptype_abbr.triptych_reliability <- function(x, ..., prefix_named = FALSE, suffix_shape = TRUE) {
"trpt_rel"
}
# coercion
#' @exportS3Method vctrs::vec_ptype2
vec_ptype2.triptych_reliability <- function(x, y, ..., x_arg = "", y_arg = "") {
UseMethod("vec_ptype2.triptych_reliability")
}
#' @export
vec_ptype2.triptych_reliability.triptych_reliability <- function(x, y, ..., x_arg = "", y_arg = "") {
if (!has_compatible_observations(x, y)) {
stop_incompatible_type(
x,
y,
x_arg = x_arg,
y_arg = y_arg,
details = "Observations are not compatible."
)
}
new_triptych_reliability(list(), observations(x))
}
# casting
#' @param r A reference triptych_mcbdsc object whose attributes are used for casting.
#'
#' @rdname reliability
#' @export
as_reliability <- function(x, r) {
stopifnot(inherits(r, "triptych_reliability"))
x <- tibble::as_tibble(x)
x <- dplyr::mutate_all(x, vec_cast, to = double())
vec_cast(x, to = r)
}
#' @exportS3Method vctrs::vec_cast
vec_cast.triptych_reliability <- function(x, to, ...) {
UseMethod("vec_cast.triptych_reliability")
}
#' @export
vec_cast.triptych_reliability.triptych_reliability <- function(x, to, ..., x_arg = "", to_arg = "") {
if (!has_compatible_observations(x, to)) {
stop_incompatible_cast(
x,
to,
x_arg = x_arg,
to_arg = to_arg,
details = "Observations are not compatible."
)
}
x
}
#' @export
vec_cast.triptych_reliability.list <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_reliability.data.frame <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_reliability.tbl_df <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_reliability.double <- function(x, to, ...) {
y <- observations(to)
ord <- order(x, -y)
xo <- x[ord]
xr <- monotone::monotone(y[ord])
bins <- rle(xr)
red_iKnots <- cumsum(bins$lengths)
list(
estimate = tibble::tibble(
x_min = xo[c(0, utils::head(red_iKnots, -1)) + 1],
x_max = xo[red_iKnots],
CEP = bins$values
),
region = list(),
x = x
) |>
list() |>
new_triptych_reliability(y = y)
}
#' @export
eval_diag.triptych_reliability <- function(x, at, ...) {
purrr::map(x, at = at, .f = \(o, at) {
pivot_longer(
o$estimate,
cols = dplyr::starts_with("x_"),
values_to = "x"
) |>
with(approx(x, CEP, xout = at, ties = list("ordered", mean))$y)
})
}
#' @export
observations.triptych_reliability <- function(x, ...) {
attr(x, "y")
}
#' @export
forecasts.triptych_reliability <- function(x, ...) {
f <- function(o) tibble::tibble(x = o$x)
g <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, f) |>
do.call(g, args = _)
}
#' @importFrom tidyr pivot_longer
#'
#' @rdname estimates
#' @export
estimates.triptych_reliability <- function(x, at = NULL, ...) {
f <- function(o) {
tidyr::pivot_longer(
data = o$estimate,
cols = dplyr::starts_with("x_"),
names_to = NULL,
values_to = "x")
}
g <- if (is.null(at)) {
f
} else {
function(o) {
r <- with(f(o), approx(x, CEP, xout = at, ties = list("ordered", mean))$y)
tibble::tibble(CEP = r, x = at)
}
}
h <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, g) |>
do.call(h, args = _)
}
#' @rdname regions
#' @export
regions.triptych_reliability <- function(x, ...) {
if (!has_regions(x)) return(NULL)
f <- function(o) o$region
g <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, f) |>
do.call(g, args = _)
}
#' @export
has_regions.triptych_reliability <- function(x, ...) {
any(sapply(x, \(o) tibble::is_tibble(o$region)))
}
#' @export
add_confidence.triptych_reliability <- function(x, level = 0.9, method = "resampling_cases", ...) {
stopifnot(method %in% c("resampling_cases", "resampling_Bernoulli"))
m <- get(method)(x, level = level, position = "estimate", ...)
for (i in seq_along(x)) {
x[[i]]$region <- m[[i]]
}
x
}
#' @export
add_consistency.triptych_reliability <- function(x, level = 0.9, method = "resampling_Bernoulli", ...) {
stopifnot(identical(method, "resampling_Bernoulli"))
m <- get(method)(x, level = level, position = "diagonal", ...)
for (i in seq_along(x)) {
x[[i]]$region <- m[[i]]
}
x
}
#' @rdname resampling_cases
#' @export
resampling_cases.triptych_reliability <- function(x, level = 0.9, n_boot = 1000, ...) {
#saved_seed <- .Random.seed
y <- observations(x)
purrr::map(
.x = x,
level = level,
n_boot = n_boot,
.f = function(o, level, n_boot) {
xo <- unique(sort(o$x))
bounds <- bootstrap_sample_cases(o$x, y, n_boot, reliability, xo) |>
bootstrap_quantile(probs = 0.5 + c(-0.5, 0.5) * level)
tibble::tibble(
x = xo,
lower = bounds[1L, ],
upper = bounds[2L, ],
method = paste0("resampling_cases_", n_boot),
level = level
)
}
)
}
#' @param position Either `"estimate"` for confidence regions, or `"diagonal"`
#' for consistency regions.
#'
#' @rdname resampling_Bernoulli
#' @export
resampling_Bernoulli.triptych_reliability <- function(x, level = 0.9, n_boot = 1000, position = c("diagonal", "estimate"), ...) {
#saved_seed <- .Random.seed
y <- observations(x)
position <- match.arg(position)
x0 <- switch(position, diagonal = expression(o$x), estimate = expression(recalibrate_mean2(o$x, y)))
purrr::map(
.x = x,
level = level,
n_boot = n_boot,
.f = function(o, level, n_boot) {
xo <- unique(sort(o$x))
prob <- eval(x0)
bounds <- bootstrap_sample_Bernoulli(o$x, prob, n_boot, reliability, xo) |>
bootstrap_quantile(probs = 0.5 + c(-0.5, 0.5) * level)
tibble::tibble(
x = xo,
lower = bounds[1L, ],
upper = bounds[2L, ],
method = paste0("resampling_Bernoulli_", n_boot),
level = level
)
}
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.