R/to_from_ts.R

Defines functions ts_ts ts_dts.ts ts_ts_dts

Documented in ts_ts

register_class("ts")

# to ---------------------------------------------------------------------------

#' Convert to Class
#' @noRd
ts_ts_dts <- function(x, frequency = NULL) {
  stopifnot(inherits(x, "dts"))

  wx <- wide_core(combine_id_cols(ts_regular(x)))

  if (is.null(frequency)) {

    # try to regularize common time axis
    # this is needed if there are uncovered parts among several series
    reg.time <- regularize_date(wx[[1]])
    check_regular_pattern(reg.time)
    setnames(wx, 1, "time") # time col may have a different name
    wx <- merge_time_date(
      data.table::data.table(time = reg.time), wx,
      by.x = "time", by.y = "time"
    )

    tsp <- date_time_to_tsp(wx[[1]])
  } else {
    tsp <- date_time_to_tsp(wx[[1]], frequency = frequency)
  }
  # tsp <- date_time_to_tsp(wx[[1]])
  cdta <- wx[, -1]
  if (NCOL(cdta) == 1L) {
    cdta <- as.numeric(cdta[[1]])
  } else {
    cdta <- as.matrix(cdta)
  }
  z <- ts(cdta, start = tsp[1], frequency = tsp[3])
  z
}


# from -------------------------------------------------------------------------

#' @export
#' @method ts_dts ts
ts_dts.ts <- function(x) {
  stopifnot(inherits(x, "ts"))
  timec <- ts_to_date_time(x)
  m <- as.matrix(x)
  dta <- data.table(m)
  dta[, time := timec]
  if (ncol(m) == 1L) {
    names(dta)[1] <- "value"
    # needs the ts_dts.data.table
    setcolorder(dta, c("time", "value"))
  } else {
    dta <- melt(
      dta,
      id.vars = "time",
      variable.name = "id",
      variable.factor = FALSE
    )
    setcolorder(dta, c("id", "time", "value"))
  }
  # implicit NAs by default, use ts_regular to get explict NAs
  dts_init(dta)
}


# main converter ---------------------------------------------------------------

#' Convert Everything to Everything
#'
#' tsbox is built around a set of converters, which convert time series
#' stored as `ts`, `xts`, `zoo`, `zooreg`, `data.frame`, `data.table`, `tbl`,
#' `tbl_ts`, `tbl_time`, `tis`, `irts` or `timeSeries` to each other.
#'
#' In data frames, multiple time series will be stored in a 'long' format. tsbox
#' detects a *value*, a *time* and zero to several *id* columns. Column
#' detection is done in the following order:
#'
#' 1. Starting **on the right**, the first first `numeric` or `integer` column
#' is used as **value column**.
#'
#' 1. Using the remaining columns, and starting on the right again, the first
#' `Date`, `POSIXct`, `numeric` or `character` column is used as
#' **time column**. `character` strings are parsed by [anytime::anytime()].
#' The time stamp, `time`, indicates the beginning of a period.
#'
#' 1. **All remaining** columns are **id columns**. Each unique combination of
#' id columns points to a time series.
#'
#' **Alternatively**, the **time** column and the **value** column to be
#' explicitly named as `time` and `value`. If explicit names are used, the
#' column order will be ignored.
#'
#' Whenever possible, tsbox relies on **heuristic time conversion**. When a
#' monthly `"ts"` time series, e.g., `AirPassengers`, is converted to a data
#' frame, each time stamp (of class `"Date"`) is the first day of the month. In
#' most circumstances, this reflects the actual meaning of the data stored in a
#' `"ts"` object. Technically, of course, this is not correct: `"ts"` objects
#' divide time in period of equal length, while in reality, February is shorter
#' than January. Heuristic conversion is done for frequencies of 0.1 (decades),
#' 1 (years), 4 (quarters) and 12 (month).
#'
#' For other frequencies, e.g. 260, of `EuStockMarkets`, tsbox uses  **exact
#' time conversion**. The year is divided into 260 equally long units, and time
#' stamp of a period will be a point in time (of class `"POSIXct"`).
#'
#' @inherit ts_default
#'
#' @return ts-boxable time series of the desired class, i.e., an object of
#'   class `ts`, `xts`, `zoo`, `zooreg`, `data.frame`, `data.table`, `tbl`,
#'   `tbl_ts`, `tbl_time`, `tis`, `irts` or `timeSeries`.
#'
#' @examples
#'
#' x.ts <- ts_c(mdeaths, fdeaths)
#' x.ts
#' ts_df(x.ts)
#'
#' suppressMessages(library(dplyr))
#' ts_tbl(x.ts)
#'
#' suppressMessages(library(data.table))
#' ts_dt(x.ts)
#'
#' suppressMessages(library(xts))
#' ts_xts(x.ts)
#'
#' # heuristic time conversion
#' # 1 month: approx. 1/12 year
#' ts_df(AirPassengers)
#'
#' # exact time conversion
#' # 1 trading day: exactly 1/260 year
#' ts_df(EuStockMarkets)
#'
#' # multiple ids
#' a <- ts_df(ts_c(fdeaths, mdeaths))
#' a$type <- "level"
#' b <- ts_pc(a)
#' b$type <- "pc"
#' multi.id.df <- rbind(a, b)
#'
#' ts_ts(multi.id.df)
#' ts_plot(multi.id.df)
#' @export
#' @importFrom anytime anydate anytime
#' @importFrom stats setNames as.ts frequency loess na.omit optimize predict
#' @importFrom stats resid time ts tsp as.formula var prcomp start tsp<- window
#' @importFrom utils getFromNamespace browseURL relist
ts_ts <- function(x) {
  check_ts_boxable(x)
  if (relevant_class(x) == "ts") {
    return(x)
  }
  ts_ts_dts(ts_dts(x))
}

Try the tsbox package in your browser

Any scripts or data that you put into this service are public.

tsbox documentation built on May 31, 2023, 6:41 p.m.