Nothing
#' AR versus TAR bootstrap supLM test for nonlinearity
#'
#' Implements various bootstrap supremum Lagrange Multiplier tests for a AR specification versus
#' a TAR specification.
#'
#' @param x A univariate time series.
#' @param B Integer. Number of bootstrap resamples. Defaults to 1000.
#' @param pa Real number in \code{[0,1]}. Sets the lower limit for the threshold search to the \code{100*pa}-th sample percentile.
#' The default is \code{0.25}
#' @param pb Real number in \code{[0,1]}. Sets the upper limit for the threshold search to the \code{100*pb}-th sample percentile.
#' The default is \code{0.75}
#' @param ar.ord Order of the AR part.
#' @param d Delay parameter. Defaults to \code{1}.
#' @param btype Bootstrap type, can be one of \code{'iid','wb.h','wb.r','wb.n'}, see Details.
#' @param \dots Additional arguments to be passed to \code{arima}.
#'
#' @details
#' Implements the bootstrap version of \code{\link{TAR.test}} the supremum Lagrange Multiplier test to test an AR specification versus a TARMA specification.
#' The option \code{btype} specifies the type of bootstrap as follows:
#' \describe{
#' \item{\code{iid}}{Residual iid bootstrap. See \insertCite{Gia22}{tseriesTARMA}, \insertCite{Gia23}{tseriesTARMA}.}
#' \item{\code{wb.h}}{Stochastic permutation of \insertCite{Han96}{tseriesTARMA}.}
#' \item{\code{wb.r}}{Residual wild bootstrap with Rademacher auxiliary distribution. See \insertCite{Gia22}{tseriesTARMA}, \insertCite{Gia23}{tseriesTARMA}.}
#' \item{\code{wb.n}}{Residual wild bootstrap with Normal auxiliary distribution. See \insertCite{Gia22}{tseriesTARMA}, \insertCite{Gia23}{tseriesTARMA}.}
#' }
#'
#' @return
#' A list of class \code{htest} with components:
#' \describe{
#' \item{\code{statistic}}{The value of the supLM statistic.}
#' \item{\code{parameter}}{A named vector: \code{threshold} is the value that maximises the Lagrange Multiplier values.}
#' \item{\code{test.v}}{Vector of values of the LM statistic for each threshold given in \code{thd.range}.}
#' \item{\code{thd.range}}{Range of values of the threshold.}
#' \item{\code{fit}}{The null model: AR fit over \code{x}.}
#' \item{\code{sigma2}}{Estimated innovation variance from the AR fit.}
#' \item{\code{data.name}}{A character string giving the name of the data.}
#' \item{\code{prop}}{Proportion of values of the series that fall in the lower regime.}
#' \item{\code{p.value}}{The bootstrap p-value of the test.}
#' \item{\code{method}}{A character string indicating the type of test performed.}
#' \item{\code{Tb}}{The bootstrap null distribution.}
#'}
#' @importFrom stats coef residuals
#' @export
#' @author Simone Giannerini, \email{simone.giannerini@@uniud.it}
#' @author Greta Goracci, \email{greta.goracci@@unibz.it}
#' @references
#' * \insertRef{Gia22}{tseriesTARMA}
#' * \insertRef{Gia23}{tseriesTARMA}
#' * \insertRef{Gor23}{tseriesTARMA}
#' * \insertRef{Gia21}{tseriesTARMA}
#' * \insertRef{Han96}{tseriesTARMA}
#'
#' @seealso \code{\link{TAR.test}} for the heteroskedastic robust asymptotic test. \code{\link{TARMAGARCH.test}} for the
#' robust version of the test with respect to GARCH innovations. \code{\link{TARMA.sim}} to simulate from a TARMA process.
#'
#' @examples
#' ## a TAR(1,1) where the threshold effect is on the AR parameters
#' set.seed(123)
#' x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0, theta2=0, d=1, thd=0.2)
#' TAR.test.B(x1, ar.ord=1, d=1)
#' TAR.test.B(x1, ar.ord=1, d=1, btype='wb.r')
#' TAR.test.B(x1, ar.ord=1, d=1, btype='wb.h')
#'
#' ## a AR(1)
#' x2 <- arima.sim(n=100, model=list(order = c(1,0,0),ar=0.5))
#' TAR.test.B(x2, ar.ord=1, d=1)
#' TAR.test.B(x2, ar.ord=1, d=1, btype='wb.r')
#' TAR.test.B(x2, ar.ord=1, d=1, btype='wb.h')
#'
## '***************************************************************************
TAR.test.B <- function(x, B=1000 ,pa=.25, pb=.75, ar.ord, d=1,
btype = c('iid','wb.h','wb.r','wb.n'),...){
btype <- match.arg(btype)
DNAME <- deparse(substitute(x))
n <- length(x)
test.a <- TAR.test(x,pa=pa, pb=pb, ar.ord, d)
test.stat <- test.a$statistic
resi <- scale(test.a$fit$residuals,center=TRUE,scale=FALSE) # centered residuals for the bootstrap
int.p <- test.a$fit$coefficients['Intercept']
ar.p <- test.a$fit$coefficients[-1]
k <- max(ar.ord,d) # number of discarded obs
neff <- n - k
a <- ceiling((neff-1)*pa)
b <- floor((neff-1)*pb)
nr <- b-a+1
# Bootstrap
# **************************************************************************
n.start <- floor(n/3)
np <- neff + n.start # transient
if(btype == 'wb.r'){
eta <- matrix(sample(c(-1,1),replace=TRUE, size=np*B),np,B)
resi.b <- c(resi[1:n.start],resi)*eta
smeth <- 'wild bootstrap (Rademacher)'
}else
if(btype == 'wb.n'){
eta <- matrix(rnorm(np*B),np,B)
resi.b <- c(resi[1:n.start],resi)*eta
smeth <- 'wild bootstrap (Gaussian)'
}else
if(btype == 'iid'){
resi.b <- matrix(sample(resi,size=np*B,replace=TRUE),np,B)
smeth <- 'i.i.d. bootstrap'
}
# ******************************************************************************
if(btype == 'wb.h'){
smeth <- 'stochastic perturbation (Hansen)'
# SUBROUTINE ARvsTAR_HB(x,n,d,p,a,b,neff,nrep,test,testb)
dum <- matrix(0,B,2)
storage.mode(dum) <- 'double'
Tb <- .Fortran('arvstar_hb',as.double(x),as.integer(n),as.integer(d),
as.integer(ar.ord),as.integer(a),as.integer(b),as.integer(neff),
as.integer(B),test=double(2),testb = dum,PACKAGE='tseriesTARMA')$testb
}else{
x.b <- resi.b
for(i in (ar.ord+1):np){
x.b[i,] <- int.p + c(t(x.b[(i-1):(i-ar.ord),,drop=FALSE])%*%ar.p) + resi.b[i,] #
}
x.b <- ts(x.b[-(1:(n.start-k)),]) # bootstrap resamples [n x B]
Tb <- matrix(NA,B,2)
for(k in 1:B){
xb <- x.b[,k]
res <- TAR.test(xb,pa=pa, pb=pb, ar.ord, d)
Tb[k, ] <- res$statistic
}
}
dfree <- 1 + ar.ord
colnames(Tb) <- c('sLM','sLMh')
p.value <- rowMeans(t(Tb)>test.stat,na.rm=TRUE)
METHOD <- paste(smeth,' supLM test AR vs TAR. Null model: AR(',ar.ord,')',sep='')
structure(list(test.v=test.a$test.v,
thd.range=test.a$thd.range, fit=test.a$fit, sigma2=test.a$sigma2,
parameter=test.a$parameter, data.name=DNAME, prop=test.a$prop, statistic=test.a$statistic,
p.value=p.value[1], method=METHOD,Tb=Tb,pval=p.value,
d=d,pa=pa, dfree=dfree),class=c('TARMAtest','htest'))
}
## ****************************************************************************
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.