Nothing
#' Unit root supLM test for an integrated MA versus a stationary TARMA process
#'
#' Implements a supremum Lagrange Multiplier unit root test for the null hypothesis of a integrated MA process versus
#' a stationary TARMA process.
#'
#' @param x A univariate vector or time series.
#' @param B Integer. Number of bootstrap resamples. Defaults to 1000.
#' @param pa Real number in \code{[0,1]}. Sets the lower limit for the threshold search to the \code{100*pa}-th sample percentile.
#' The default is \code{0.25}
#' @param pb Real number in \code{[0,1]}. Sets the upper limit for the threshold search to the \code{100*pb}-th sample percentile.
#' The default is \code{0.75}
#' @param thd.range Vector of optional user defined threshold range. If missing then \code{pa} and \code{pb} are used.
#' @param method Fitting method to be passed to \code{arima}.
#' @param btype Bootstrap type, can be one of \code{'iid','wb.r','wb.n'}, see Details.
#' @param \dots Additional arguments to be passed to \code{arima}.
#'
#' @details
#' Implements the bootstrap version of \code{\link{TARMAur.test}} the supremum Lagrange Multiplier test
#' to test an integrate MA(1) specification versus a stationary TARMA(1,1) specification.
#' The option \code{btype} specifies the type of bootstrap as follows:
#' \describe{
#' \item{\code{wb.r}}{Residual wild bootstrap with Rademacher auxiliary distribution. See \insertCite{Gia22}{tseriesTARMA}.}
#' \item{\code{wb.n}}{Residual wild bootstrap with Normal auxiliary distribution. See \insertCite{Gia22}{tseriesTARMA}.}
#' \item{\code{iid}}{Residual iid bootstrap. See \insertCite{Gor21b}{tseriesTARMA}.}
#' }
#'
#' @return
#' An object of class \code{TARMAtest} with components:
#' \describe{
#' \item{\code{statistic}}{The value of the supLM statistic.}
#' \item{\code{parameter}}{A named vector: \code{threshold} is the value that maximises the Lagrange Multiplier values.}
#' \item{\code{test.v}}{Vector of values of the LM statistic for each threshold given in \code{thd.range}.}
#' \item{\code{thd.range}}{Range of values of the threshold.}
#' \item{\code{fit.ARMA}}{The null model: IMA(1) fit over \code{x}.}
#' \item{\code{sigma2}}{Estimated innovation variance from the IMA fit.}
#' \item{\code{data.name}}{A character string giving the name of the data.}
#' \item{\code{p.value}}{The bootstrap p-value of the test.}
#' \item{\code{method}}{A character string indicating the type of test performed.}
#' \item{\code{d}}{The delay parameter.}
#' \item{\code{pa}}{Lower threshold quantile.}
#' \item{\code{Tb}}{The bootstrap null distribution.}
#'}
#' @importFrom stats coef residuals
#' @export
#' @author Simone Giannerini, \email{simone.giannerini@@uniud.it}
#' @author Greta Goracci, \email{greta.goracci@@unibz.it}
#' @references
#' * \insertRef{Cha24}{tseriesTARMA}
#'
#' @seealso \code{\link{TARMAur.test}} for the asymptotic version of the test. \code{\link{print.TARMAtest}} for the print method.
#'
#' @examples
#' ## a TARMA(1,1,1,1)
#' set.seed(123)
#' x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0.5, theta2=0.5, d=1, thd=0.2)
#' TARMAur.test.B(x1, B=100) # B=100 for speedup
#'
#'
#' ## a IMA(1,1)
#' x2 <- arima.sim(n=100, model=list(order = c(0,1,1),ma=0.6))
#' TARMAur.test.B(x2, B=100) # B=100 for speedup
#'
#'
## ***************************************************************************
TARMAur.test.B <- function(x, B=1000, pa=.25, pb=.75, thd.range, method='ML',
btype = c('wb.r','wb.n','iid'), ...){
DNAME <- deparse(substitute(x))
if(!is.ts(x)) x <- ts(x)
btype <- match.arg(btype)
n <- length(x)
fit <- stats::arima(x, order=c(0,1,1), method=method,xreg=data.frame(intercept=1:n))
if(fit$code!=0) stop('ARMA fit does not converge')
# elements from ARMA fit that we need**************************************
ma.1 <- -coef(fit)['ma1']
epst <- residuals(fit)
resi <- scale(epst,center=TRUE,scale=FALSE) # centered residuals for the bootstrap
s2 <- fit$sigma2 # taken as estimate of sigma^2
# *****************************************************************************
nstart <- 1
np <- n + nstart # transient
if(btype == 'wb.r'){
eta <- matrix(sample(c(-1,1),replace=TRUE, size=np*B),np,B)
resi.b <- c(rnorm(nstart),resi)*eta
smeth <- 'wild bootstrap (Rademacher)'
}else
if(btype == 'wb.n'){
eta <- matrix(rnorm(np*B),np,B)
resi.b <- c(rnorm(nstart),resi)*eta
smeth <- 'wild bootstrap (Gaussian)'
}else
if(btype == 'iid'){
resi.b <- matrix(sample(resi,size=np*B,replace=TRUE),np,B)
smeth <- 'i.i.d. bootstrap'
}
# ******************************************************************************
test.a <- TARMAur.test(x,pa=pa, pb=pb, method=method,...)
xt <- x[2:n]; # X_t
xth <- x[1:(n-1)] # X_(t-1)
neff <- length(xt) # effective sample size
x.b <- apply(rbind(rep(x[1],B),resi.b[-1,]-ma.1*resi.b[-n,]),MARGIN=2,FUN=cumsum)
x.b <- x.b[-(1:nstart),]
Tb <- double(B)
for(k in 1:B){
Tb[k] <- TARMAur.test(x.b[,k], pa=pa, pb=pb, method=method, ...)$statistic
}
test.stat <- test.a$statistic
names(test.stat) <- 'supLM'
p.value <- mean(Tb>test.stat,na.rm=TRUE)
METHOD <- paste(smeth,' supLM unit root test IMA vs TARMA',sep='')
structure(list(statistic=test.a$statistic, parameter=test.a$parameter,
test.v=test.a$test.v, thd.range=test.a$thd.range, fit.ARMA=test.a$fit.ARMA,
sigma2=test.a$sigma2, data.name=DNAME, p.value=p.value, method=METHOD,
d=1, pa=pa, Tb=Tb),class=c('TARMAtest','htest'))
}
### ***************************************************************************
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.