Nothing
#' Score Method
#'
#' @param x an object of class \dQuote{tsgarch.estimate}.
#' @param ... not currently used.
#' @return The score matrix
#' @details The function returns the scores of the negative of the log likelihood
#' at the optimal solution. The scores are from the second pass of the optimizer
#' using scaling and hence represent the scaled scores. These are then rescaled
#' before returning the matrix.
#' @method estfun tsgarch.estimate
#' @aliases estfun.tsgarch.estimate
#' @rdname estfun
#' @author Alexios Galanos
#' @export
#'
estfun.tsgarch.estimate <- function(x, ...)
{
out <- x$scaled_scores
N <- nrow(out)
out <- sweep(out, 2, 1/x$parameter_scale, FUN = "*")
colnames(out) <- x$parmatrix[estimate == 1]$parameter
return(out)
}
#' Bread Method
#'
#' @param x an object of class \dQuote{tsgarch.estimate}.
#' @param ... not currently used.
#' @return The analytic hessian of the model.
#' @method bread tsgarch.estimate
#' @aliases bread.tsgarch.estimate
#' @rdname bread
#' @author Alexios Galanos
#' @export
#'
bread.tsgarch.estimate <- function(x, ...)
{
D <- diag(1/x$parameter_scale, nrow = length(x$parameter_scale))
H <- t(D) %*% x$scaled_hessian %*% D
H <- solve(H)
return(H)
}
meat_tsgarch <- function(x, adjust = FALSE, ...)
{
psi <- estfun(x, ...)
k <- NCOL(psi)
n <- NROW(psi)
rval <- crossprod(as.matrix(psi))
if (adjust) rval <- n/(n - k) * rval
rownames(rval) <- colnames(rval) <- colnames(psi)
return(rval)
}
meatHAC_tsgarch <- function(x, prewhite = FALSE, weights = NULL, lag = NULL,
kernel = c("Bartlett", "Parzen", "Quadratic Spectral",
"Truncated", "Tukey-Hanning"),
adjust = TRUE, diagnostics = FALSE, ar.method = "ols", ...)
{
prewhite <- as.integer(prewhite)
umat <- estfun(x, ...)[, , drop = FALSE]
if (is.zoo(umat)) umat <- as.matrix(coredata(umat))
n.orig <- n <- nrow(umat)
k <- ncol(umat)
if (is.null(weights)) {
if (is.null(lag)) {
lag <- floor(bwNeweyWest(x, order.by = NULL, weights = 1, prewhite = prewhite, ar.method = ar.method,
kernel = kernel[1]))
}
weights <- seq(1, 0, by = -(1/(lag + 1)))
} else {
if (length(weights) > n) {
warning("more weights than observations, only first n used")
weights <- weights[1:n]
}
}
index <- 1:n
umat <- umat[index, , drop = FALSE]
if (prewhite > 0) {
var.fit <- try(ar(umat, order.max = prewhite, demean = FALSE, aic = FALSE, method = ar.method))
if (inherits(var.fit, "try-error"))
stop(sprintf("VAR(%i) prewhitening of estimating functions failed", prewhite))
if (k > 1) {
D <- solve(diag(ncol(umat)) - apply(var.fit$ar, 2:3, sum))
} else {
D <- as.matrix(1/(1 - sum(var.fit$ar)))
}
umat <- as.matrix(na.omit(var.fit$resid))
n <- n - prewhite
}
utu <- 0.5 * crossprod(umat) * weights[1]
wsum <- n * weights[1]/2
w2sum <- n * weights[1]^2/2
if (length(weights) > 1) {
for (ii in 2:length(weights)) {
utu <- utu + weights[ii] * crossprod(umat[1:(n - ii + 1), , drop = FALSE], umat[ii:n, , drop = FALSE])
wsum <- wsum + (n - ii + 1) * weights[ii]
w2sum <- w2sum + (n - ii + 1) * weights[ii]^2
}
}
utu <- utu + t(utu)
if (adjust) utu <- n.orig/(n.orig - k) * utu
if (prewhite > 0) utu <- crossprod(t(D), utu) %*% t(D)
wsum <- 2 * wsum
w2sum <- 2 * w2sum
bc <- n^2/(n^2 - wsum)
df <- n^2/w2sum
rval <- utu
if (diagnostics) attr(rval, "diagnostics") <- list(bias.correction = bc, df = df)
return(rval)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.