Nothing
calcES <- function(data,treat,w,numeric.vars,estimand,multinom=FALSE,sw=NULL,get.means=FALSE){
# with get.means, only one weight can be specified
if (get.means){
if ( ifelse( is.null(ncol(w)) , FALSE , ncol(w)>1) ){
stop("Only a single weight can be specified wtih gen.means=TRUE")
}
}
N = nrow(data)
N1 = sum(treat)
N0 = N-N1
# separate out treatment group for easy matrix operations
w1 = w[treat==1,] # subset to treated weight matrix
data1 = as.matrix(data[treat==1,]) # subset to treated data
index.1 = !is.na(data1) # only numeric variable will have missing data, which are dropped from ES calculation.
den1 = t(w1)%*%index.1 # sum of weights changes depending on missing data -- only numeric variables should have missing values in data
data1[!index.1] = 0 # change missing values to 0 so they dont contribute to the sum and dont mess up matrix operations
m1 = t(w1)%*%data1 / den1 # calculate mean among treated
# m0 and the SD depends on estimand
if (estimand=="ATE"){
# need variance based only on sw
data = as.matrix(data)
index = !is.na(data)
data[!index] = 0 # change missing values to 0 so they dont contribute to the sum and dont mess up matrix operations
den = sw%*%index
m.sw = sw%*%data / den
# pooled variance estimate for ATE
var.p = sw%*%data^2/den - (m.sw)^2
var.p = ifelse(var.p==0 , NA , var.p)
var.p[,numeric.vars] = var.p[,numeric.vars] * N / (N-1)
if (get.means){
# calculate E[X^2] among treated
m1.2 = t(w1)%*%(data1^2) / den1
var1=(m1.2-m1^2)
var1 = ifelse(var1==0 , NA , var1)
var1[,numeric.vars] = var1[,numeric.vars] * N1 / (N1-1)
}
if (multinom){
# multinom ATE: m0 is full population mean
m0 = m.sw
if (get.means){
var0=var.p
}
# this just handles that m0 and var.p are vectors when using multinom option
std.effect = sweep(sweep( m1 , 2 , sqrt(var.p) , "/") , 2 , m0/sqrt(var.p) , "-")
}else{
# same steps as with treated, but now for controls
w0 = w[treat==0,]
data0 = as.matrix(data[treat==0,])
index.0 = !is.na(data0)
den0 = t(w0)%*%index.0
data0[!index.0] = 0
# calculate mean among control
m0 = t(w0)%*%data0 / den0
if (get.means){
# calculate E[X^2] among control
m0.2 = t(w0)%*%(data0^2) / den0
var0=(m0.2-m0^2)
var0 = ifelse(var0==0 , NA , var0)
var0[,numeric.vars] = var0[,numeric.vars] * N0 / (N0-1)
}
# this just handles that var.p is a vector
std.effect = sweep( m1-m0 , 2 , sqrt(var.p) , "/")
}
}else{ #ATT
# same steps as with treated, but now for controls
w0 = w[treat==0,]
data0 = as.matrix(data[treat==0,])
index.0 = !is.na(data0)
den0 = t(w0)%*%index.0
data0[!index.0] = 0
# calculate mean among control
m0 = t(w0)%*%data0 / den0
# calculate E[X^2] among treated
m1.2 = t(w1)%*%(data1^2) / den1
var1=(m1.2-m1^2)
var1 = ifelse(var1==0 , NA , var1)
var1[,numeric.vars] = var1[,numeric.vars] * N1 / (N1-1)
if (get.means){
# calculate E[X^2] among control
m0.2 = t(w0)%*%(data0^2) / den0
var0=(m0.2-m0^2)
var0 = ifelse(var0==0 , NA , var0)
var0[,numeric.vars] = var0[,numeric.vars] * N0 / (N0-1)
}
std.effect = (m1-m0)/sqrt(var1)
}
if (get.means){
## surveyglm always uses total sample, not number of non-NA
res = t(rbind(tx.mn=m1 , tx.sd=sqrt(var1), ct.mn=m0 , ct.sd=sqrt(var0) , std.eff.sz=std.effect ))
colnames(res) = c("tx.mn", "tx.sd", "ct.mn", "ct.sd", "std.eff.sz")
return(res)
}else{
return(std.effect)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.