Nothing
#' Test-Retest Alpha Coefficient
#'
#' The testRetestAlpha function computes the test-retest alpha coefficient
#' (Green, 2003).
#'
#' @param dat A dataframe containing the items in the scale at both measurement
#' moments. If no dataframe is specified, a dialogue will be launched to allow
#' the user to select an SPSS datafile. If only one dataframe is specified,
#' either the items have to be ordered chronologically (i.e. first all items
#' for the first measurement, then all items for the second measurement), or
#' the vector 'moments' has to be used to indicate, for each item, to which
#' measurement moment it belongs.
#' @param moments Used to indicate to which measurement moment each item in
#' 'dat' belongs; should be a vector with the same length as dat has columns,
#' and with two possible values (e.g. 1 and 2).
#' @param testDat,retestDat Dataframes with the items for each measurement
#' moment: note that the items have to be in the same order (unless sortItems
#' is TRUE).
#' @param sortItems If true, the columns (items) in each dataframe are ordered
#' alphabetically before starting. This can be convenient to ensure that the
#' order of the items at each measurement moment is the same.
#' @param convertToNumeric When TRUE, the function will attempt to convert all
#' vectors in the dataframes to numeric.
#' @param x The object to print
#' @param ... Ignored.
#'
#' @return An object with the input and several output variables. Most notably:
#'
#' \item{input}{Input specified when calling the function}
#' \item{intermediate}{Intermediate values and objects computed to get to the
#' final results} \item{output$testRetestAlpha}{The value of the test-retest
#' alpha coefficient.}
#' @references Green, S. N. (2003). A Coefficient Alpha for Test-Retest Data.
#' Psychological Methods, 8(1), 88-101. <doi:10/bxq9r4>
#'
#' @examples
#'
#' \dontrun{
#' ### This will prompt the user to select an SPSS file
#' testRetestAlpha();
#' }
#'
#' ### Load data from simulated dataset testRetestSimData (which
#' ### satisfies essential tau-equivalence).
#' data(testRetestSimData);
#'
#' ### The first column is the true score, so it's excluded in this example.
#' exampleData <- testRetestSimData[, 2:ncol(testRetestSimData)];
#'
#' ### Compute test-retest alpha coefficient
#' testRetestAlpha(exampleData);
#'
#' @rdname testRetestAlpha
#' @export
testRetestAlpha <- function(dat = NULL, moments = NULL,
testDat = NULL, retestDat = NULL,
sortItems = FALSE, convertToNumeric = TRUE) {
res <- list(input = list(dat = dat,
moments = moments,
testDat = testDat,
retestDat = retestDat,
sortItems = sortItems,
convertToNumeric = convertToNumeric),
intermediate = list(), output = list());
### If no dataframe was specified, load it from an SPSS file
if (is.null(dat) && is.null(testDat) && is.null(retestDat)) {
dat <- getData(errorMessage=paste0("No dataframe specified, and no valid datafile selected in ",
"the dialog I then showed to allow selection of a dataset.",
"Original error:\n\n[defaultErrorMessage]"),
use.value.labels=FALSE, applyRioLabels = FALSE);
}
if (!is.null(dat)) {
if (is.null(res$intermediate$moments)) {
res$intermediate$moments <- rep(c(0,1), each=(ncol(dat))/2);
}
momentsBoolean <- (res$intermediate$moments == min(res$intermediate$moments));
res$intermediate$testDat <- testDat <- dat[, momentsBoolean];
res$intermediate$retestDat <- retestDat <- dat[, !momentsBoolean];
}
else if (xor(is.null(testDat), is.null(retestDat))) {
stop("Provide both testDat and retestDat; or, if you have all scores in one ",
"dataframe, provide it as 'dat' argument!");
}
if (sortItems) {
res$intermediate$testDat <- testDat <- testDat[, order(names(testDat))];
res$intermediate$retestDat <- retestDat <- retestDat[, order(names(retestDat))];
}
if (convertToNumeric) {
res$intermediate$testDat <- testDat <- massConvertToNumeric(testDat);
res$intermediate$retestDat <- retestDat <- massConvertToNumeric(retestDat);
}
### So now we have a testDat and a retestDat, so we can get started.
### First get the sum of the covariances between
### the different-time/different-item covariances (equation 14, page 94
### of Green, 2003).
res$intermediate$covar <- stats::cov(testDat, retestDat);
### We have to remove the sum of the variances of course.
res$intermediate$covar.sum <-
sum(res$intermediate$covar) - sum(diag(res$intermediate$covar));
### Divide by (J(J-1)), where J is the number of items (equation 14)
res$intermediate$J <- J <- ncol(testDat);
res$intermediate$itemTrueScoreVariance <-
res$intermediate$covar.sum / (J * (J - 1));
### Get item true score variance (equation 15, which is the numerator
### in the test-retest alpha)
res$intermediate$testTrueScoreVariance <-
J^2 * res$intermediate$itemTrueScoreVariance;
### Get common scale variance (equation 16, which is the denominator
### in the test-retest alpha)
### First compute the scales themselves
res$intermediate$testScale <- rowSums(testDat);
res$intermediate$retestScale <- rowSums(retestDat);
### The the product of the standard deviations
res$intermediate$commonScaleVariance <-
stats::sd(res$intermediate$testScale) * stats::sd(res$intermediate$retestScale);
### Then compute the test-retest alpha coefficient
res$output$testRetestAlpha <- res$intermediate$testTrueScoreVariance /
res$intermediate$commonScaleVariance;
class(res) <- 'testRetestAlpha';
return(res);
}
#' @export
#' @method print testRetestAlpha
#' @rdname testRetestAlpha
print.testRetestAlpha <- function(x, ...) {
print(x$output$testRetestAlpha, ...);
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.